
tuning to the developer. Unfortunately,
GUI builders are typically incapable of
reading the code after manual editing.

Glade can handle both approaches; it
either generates C code or an XML defin-
ition, which can be parsed by a program
that uses the Libglade library. Gtk2::
GladeXML from CPAN gives developers a
Perl wrapper.

Figure 2 shows Glade in
action. The main window is
shown top left. Here, a user is
creating a new project. The
toolbar at the bottom left con-
tains a collection of widgets;
the finished application is
shown in the center. The win-
dow top right handles the
widget attributes, such as the
name, size, editing capabili-
ties, and the signals it handles.
The window bottom right is
the widget tree window show-
ing a hierarchical view of the
widgets available to the appli-
cation.

To create a new GUI descrip-
tion, click the main window

icon in the toolbar (the icon with the
blue stripes top left). This opens an
empty application window, as shown in
Figure 3. A new Vbox container creates
the menu bar at the top and the text field
at its bottom. To add more widgets, click
the field in the toolbar, and then click the
application window.

We are still missing a menu, a scrolled
window, and the text view widget. Fig-
ure 4 shows the application window just
before completion. There are a lot of
unused menu entries for a simple appli-
cation such as capture.pl, but clicking on
Edit Menus in the Properties window
pops up a dialog where we can easily get
rid of all but the most important ones
(see Figure 5).

Any other modifications you may need
are just as simple. For example, the
length and width of the main window in
the capture.pl GUI have been set to 300
and 120 respectively via Properties.

The next step is to click on the Save
button in the main Glade window and
type the project name, capture, to store
two files: capture.glade and capture.
pglade. We do not need the second file,

If you need to know who is currently
logged on to your local network and
prefer a GTK2 interface to view this

information, this month’s script, cap-
ture.pl, is just what the doctor ordered. It
uses a CPAN module called Net::Pcap
(see also [1]) to sniff traffic off the wire
or on wireless networks, decodes the
captured packets, determines if the
sender is on the local network, and dis-
plays the IP addresses it has identified in
a text view widget (see Figure 1).

The script stores its latest findings at
the top of the list and dynamically
updates the list. The File menu has a
Reset entry that allows users to delete
previously discovered addresses from the
list, and there is a Quit entry to
quit the program.

XML-based GUI
The script does not use fixed
statements to define the GUI,
but parses an XML description
at runtime. Programmers can
use the Glade 2 tool from [2] to
create the file. After parsing the
definition, capture.pl goes on to
set up the GUI and handle
incoming events.

Most GUI builders use a dif-
ferent approach. Developers can
use drag and drop to place wid-
gets and define events, but the
builder will then convert the
results to code, leaving the fine

The Glade GUI Builder brings the

power of drag and drop to GUI build-

ing. Scripts parse the XML-formatted

description at runtime. As an exam-

ple, we will be looking at a network

sniffer with a neat interface.

BY MICHAEL SCHILLI

Network Sniffer with GTK2 GUI

Traffic Control

68 December 2004 www.linux-magazine.com

Perl: GUI-building Scripts PROGRAMMING

w
w

w
.scx.hu.

Figure 1:
The GTK2 pro-
gram capture.pl
displays all active
computers on the
LAN in a list.

but the first file contains the XML defini-
tion of the GUI.

The capture.pl script parses this
description in line 27 when we call the
Gtk2::GladeXML constructor. The XML
file contains individual widget defini-
tions, their position relative to the GUI,
and the attributes. For example, the XML
description of the text view widget
defines the following properties:

<property name=U
"editable">False</property>U
<propertyname="cursor_visible">U
</property>

In our example, the developer has used
Glade’s point and click abilities to create
a non-editable widget with an invisible
text cursor. The following two lines of
code would have the same effect:

$text->set_editable(0);U
$text->set_cursor_visible(0);

Signals
The signal_autoconnect_all method in
line 56 defines the dynamic part of the
statically defined GUI. It links the wid-
gets in the XML description with
associated signals, such as on_quit1_
activate (File | Quit menu entry selected)
and on_reset1_activate (File | Reset entry
selected) with corresponding Perl func-
tions.

The names were automatically
assigned by Glade (see Figure 5). If you
prefer, you can change them by editing
Glade’s property fields. In line 68 cap-
ture.pl enters the main() loop; if
everything works out, the GUI should
appear on screen, allowing users to click
to their hearts’ desire.

Smooth Scrolling
Network sniffing requires some CPU
power, and that means that the process
won’t be able to handle the GUI while
actively capturing. Sluggish or down-
right frozen GUIs are clearly
unacceptable, though. To promptly
respond to every occurring user event
while using the Perl Net::Pcap module to
sniff the wire, capture.pl fork()s a child
process in line 35. The parent keeps the
GUI in shape while the child busily

examines network packets.
Prior to the fork(), we called

pipe() to create a pipe between
the child and parent processes.
When the child discovers a new
IP address, it uses the WRITE-
HANDLE to send a string
through the pipe to its parent,
the GUI manager, which uses the
READHANDLE to pick up the
message at the other end of the
pipe.

To allow the GUI to ignore the
pipe until something turns up,
and to handle user input, line 76
has a watch

Glib::IO->add_watchU
(fileno(READHANDLE), 'in',U
\&watch_callback);

which calls the callback function
defined in line 84 (watch_call-

back) whenever data arrive at the READ-
HANDLE. GTK2 is based on the Glib
library and is thus capable of accessing
the low level services the library pro-
vides. add_watch() expects a file
descriptor, rather than a file handle, so
we need a call to the Perl fileno() func-
tion to convert the READHANDLE.

In the Sniffer’s Office
Net::Pcap from CPAN is an interface to
the libpcap library. The library grabs
packets off the network and analyzes
and filters these packets at high speeds
according to previously defined criteria.
Programs such as Ethereal are based on
libpcap.

The snooper() function in line 107 first
attempts to read from the first active net-
work interface on the current host
(typically eth0) using Net::Pcap::
lookupdev. The call to Net::Pcap::lookup-
net then identifies the corresponding
network address and mask.

Net::Pcap::open_live() in line 125
opens a live capture and grabs up to 1024
bytes per packet for analysis purposes.
As the third parameter is a 1, the func-
tion enables promiscuous mode for the
card, that is, it tells the card to grab any
packets it sees, and not just the packets
destined for its own address. The fourth
parameter, -1, says that we do not need a
timeout. (If we did, this setting would be
a value in milliseconds.)

The Net::Pcap::loop function in 128
jumps into a loop that executes the
appropriate callback function, snooper_
callback(), whenever it finds a packet.
The second parameter, -1, tells the pro-
gram to keep on sniffing indefinitely,
rather than stopping after reaching a cer-
tain number of packets.

The last parameter in the call to
Net::Pcap::loop is a reference to an array

69www.linux-magazine.com December 2004

PROGRAMMINGPerl: GUI-building Scripts

Figure 2: Developers can use Glade for convenient GUI
building. The results are stored in an XML definition file.

Figure 3: The empty main window in Glade, which
we will be adding widgets to later.

Figure 4: The GUI is almost done. We just need to
get rid of the superfluous menu entries.

70 December 2004 www.linux-magazine.com

Perl: GUI-building Scripts PROGRAMMING

001 #!/usr/bin/perl
002 #############################
003 # capture -- Gtk2 GUI
004 # observing the network
005 # Mike Schilli, 2004
006 # (m@perlmeister.com)
007 #############################
008 use warnings;
009 use strict;
010
011 use Gtk2 -init;
012 use Gtk2::GladeXML;
013 use Glib;
014 use Net::Pcap;
015 use NetPacket::IP;
016 use NetPacket::Ethernet;
017 use Socket;
018
019 our @IPS = ();
020 our %IPS = ();
021
022 die "You need to be root.\n"
023 if $> != 0;
024
025 # Load GUI XML description
026 my $g =
027 Gtk2::GladeXML->new(
028 'capture.glade');
029
030 # Child/Parent comm pipe
031 pipe READHANDLE, WRITEHANDLE
032 or die "Cannot open pipe";
033
034 # Fork off a child
035 our $pid = fork();
036 die "failed to fork"
037 unless defined $pid;
038
039 if ($pid == 0) {
040 # Child, never returns
041 snooper(*WRITEHANDLE);
042 }
043
044 # Parent, init text window
045 my $buf =
046 Gtk2::TextBuffer->new();
047
048 $buf->set_text(
049 "No activity yet.\n");
050
051 my $text = $g->get_widget(
052 'textview1');
053

054 $text->set_buffer($buf);
055
056 $g->signal_autoconnect_all(
057 on_quit1_activate =>
058 sub {
059
060 # Stop snooper
061 kill('KILL', $pid);
062 wait();
063 Gtk2->main_quit;
064 },
065
066 on_reset1_activate =>
067 sub {
068
069 # Reset display
070 @IPS = ();
071 %IPS = ();
072 $buf->set_text("");
073 },
074);
075
076 Glib::IO->add_watch(
077 fileno(READHANDLE), 'in',
078 \&watch_callback);
079
080 # Enter main loop
081 Gtk2->main();
082
083 #############################
084 sub watch_callback {
085 #############################
086 chomp(my $ip =
087 <READHANDLE>);
088
089 # Register IP if unknown
090 unshift @IPS, $ip unless
091 exists $IPS{$ip};
092
093 $IPS{$ip}++;
094
095 my $text = "";
096
097 $text .= "$_\n" for @IPS;
098
099 $buf->set_text($text);
100
101 # Return true to
102 # keep watch
103 1;
104 }
105
106 #############################

107 sub snooper {
108 #############################
109 my($fd) = @_;
110
111 my($err, $addr, $netmask);
112
113 my $dev =
114 Net::Pcap::lookupdev(
115 \$err);
116
117 if(Net::Pcap::lookupnet(
118 $dev, \$addr,
119 \$netmask, \$err)) {
120 die "lookupnet on " .
121 "$dev failed";
122 }
123
124 my $object =
125 Net::Pcap::open_live(
126 $dev, 1024, 1, -1,
127 \$err);
128 Net::Pcap::loop(
129 $object, -1,
130 \&snooper_callback,
131 [$fd, $addr, $netmask]
132);
133 }
134
135 #############################
136 sub snooper_callback {
137 #############################
138 my($user_data, $header,
139 $packet) = @_;
140
141 my($fd, $addr,
142 $netmask) = @$user_data;
143
144 my $edata =
145 NetPacket::Ethernet::strip
146 ($packet);
147
148 my $ip =
149 NetPacket::IP->decode(
150 $edata);
151
152 if((inet_aton(
153 $ip->{src_ip}) &
154 pack('N', $netmask)) eq
155 pack('N', $addr)){
156 syswrite($fd,
157 "$ip->{src_ip}\n");
158 }
159 }

Listing 1: capture.pl

Article continued on p72.

72 December 2004 www.linux-magazine.com

Perl: GUI-building Scripts PROGRAMMING

of useful data, which is passed to
snooper_callback() as the first parameter
each time it executes. The array contains
three values: [$fd, $addr, $netmask]: a
file descriptor $fd, which will be sent
through the pipe to the parent process,
and the previously identified network
address and mask.

Packet Analysis
Net::Pcap::loop at line 128 jumps into a
neverending loop, which calls snooper_
callback() for every packet captured,
passing header and content information.
Within snooper_callback(), NetPacket::
Ethernet::strip extracts the Ethernet
information from the packet; Net-
Packet::IP->decode() tackles the IP layer
and returns a reference to a hash, which
stores the source IP address in src_ip.

inet_aton() from the Socket module
converts this “AA.BB.CC.DD” formatted
string to a binary format in network byte
order. The previously identified values
for the network address ($addr) and
mask ($netmask) are stored in the
processor’s native binary format (Big or
Little Endian). The call to pack in line
154 converts them to the machine-inde-
pendent network format.

capture.pl then goes on to check if the
IP address $ip belongs to the $network_
addr network, verifying if ($ip & $mask)
matches the network address in
$network_addr. This condition is ful-
filled for packets originating from the
local subnet. syswrite() in line 156 sends
the IP address string to the parent
process without buffering.

The message crosses the pipe, which
we defined in line 31, and causes an
event (thanks to the watch defined in
line 76) which calls watch_callback() in
the parent process. The
global array, which con-
tains all known IP
addresses, unsurpris-
ingly called @IPS, is
updated. Newly identi-
fied IPs are not yet stored
in the %IPS hash, and
unshift() sends them to
the start of an array,
unsurprisingly named
@IPS, which determines
the display order. Line 81
puts together a text
string containing all the

IP addresses known to the
script, separated by new-
lines. And line 99 uses the
string to update the text
view widget.

Installation
As it uses the GTK2 GUI, the
script needs a whole bunch
of modules. Here are some
of the most important ones:
ExtUtils::Depends, ExtU-
tils::PkgConfig, Glib, Gtk2,
Gtk2::GladeXML, Net::Pcap,
and NetPacket. It is easiest to
use a CPAN shell for the
install, but some manual
modifications are needed at
times. If libglade is not
installed on your machine,
surf to [3] and download the
library. The Glade program is available
from [2].

While installing Net::Pcap make sure
that you run the test phase (make test)
as root, even if the installation itself does
not need root privileges. If you still see
an error message, try calling make install
in the build directory.

Before launching capture.pl, users
need to ensure that the XML GUI defini-
tion really is stored in capture.glade. If
you want to keep everything under one
roof, you might prefer to modify line 27
as follows:

my $xml = join "\n", <DATA>;
my $g = Gtk2::GladeXML->U
new_from_buffer($xml);

Then copy the XML content from cap-
ture.glade to a DATA section at the end of
the capture.pl script:

... End of capture.pl
__DATA__
<?xml version="1.0" ...
<!DOCTYPE glade-interface ...

Because the script will switch your net-
work card to promiscuous mode, you
need to run capture.pl with root privi-
leges.

Glade gives you the power to create far
more complex GUIs. The platform-inde-
pendent XML representation is elegant
and removes the need for bulky, static
widget definitions in the code, allowing
developers to focus on the more impor-
tant dynamic aspects of the software . ■

Figure 5: The menu editor makes editing menu widgets simple.

[1] Robert Casey:“Monitoring Network
Traffic with Net::Pcap”,The Perl Journal 7/
2004, page 6 ff.

[2] Glade homepage:
http://glade.gnome.org

[3] Sources for libglade:
http://ftp.gnome.org/pub/GNOME/
sources/libglade

INFO

Michael Schilli works
as a Software Devel-
oper at Yahoo!,
Sunnyvale, California.
He wrote “Perl Power”
for Addison-Wesley
and can be contacted
at mschilli@perlmeis-
ter.com. His homepage is at
http://perlmeister.com.

T
H

E
 A

U
T

H
O

R

Figure 6: The XML definition of the GUI in the capture.glade file
created by Glade.

