
70

Schlagwort sollte hier stehenLINUX USER LINUX USERSchlagwort sollte hier stehen

It is quite common for an Internet
service to provide a Web API. Devel-
opers use the Web API to integrate

the Internet service with their own appli-
cations. Yahoo just released a REST
(Representational State Transfer) inter-
face to its search infrastructure. REST
basically lets an application send a URL
and get XML back. Of course, there is
also a new Yahoo::Search Perl module to
match; the module is available from
CPAN and was developed by regex guru
Jeffrey Friedl.

Yahoo::Search makes it easy to search
for documents, images, videos, and
many other things. HTTP access and
XML extraction are hidden behind sim-
ple calls to methods. If you intend to
write an application, you need to register
to get your own application ID. You will
be allowed to issue 5,000 calls per day to
the services mentioned in this article. To
register at [2], you will need your own
Yahoo ID, which you can get in

exchange for a valid email address.
You’ll also have to agree to Yahoo’s
Privacy Statement; make sure to read
it carefully.

Did you Mean…?
If you are not sure how a word is
spelled, you can always grab a copy of a
dictionary, although it may be missing
some of the latest buzzwords, pop cul-
ture terms, or proper nouns. The Inter-
net is a big help in this case. Most search
engines offer you a “Did you mean?”
function; that is, they suggest a sane
alternative if you have typed something
that they can’t follow.

For example, the typo script (see List-
ing 1) uses the Web API’s Term()
method to call the Yahoo web spell-
checker with a word or phrase handed to
it:

$ typo foo foughters
Corrected: foo fighters

The spellchecker does not just correct
words found in a dictionary. You can
spell check nearly any term people write
about on the Web. Even well-known pol-
iticians:

$ typo tonie blayre
Corrected:tony blair

Listing 1 shows the implementation.
The use command in line 11 loads the
Yahoo::Search module, which you
installed previously using the CPAN
shell, and passes the application ID that
you obtained from [2] to it. You need to
modify the details of the script to reflect
your credentials at this point.

The Terms() method’s Spell parameter
expects a word or phrase, sends it to the
Yahoo service, investigates the XML
returned in the response, and extracts
the answer if an answer exists. Line 14
stores the response in the $suggestion
variable. The if-else construct that fol-

Schlagwort sollte hier stehenLINUX USER

TAPPING IN
Using the Yahoo Search API with Perl

TAPPING IN

Following in the footsteps of Google, Amazon, and eBay, Yahoo recently

introduced a web service API to its search engine. In this month’s column, we

look at three Perl scripts that can help you correct typos, view other people’s

vacation pictures, and track those long lost pals from school.

BY MICHAEL SCHILLI

Perl: Yahoo API ScriptingPROGRAMMING

70 ISSUE 56 JULY 2005 W W W. L I N U X- M A G A Z I N E . C O M

LINUX USERSchlagwort sollte hier stehen

71

lows either outputs the response or No
corrections, if the search engine failed to
come up with the goods. Although the
service is making progress with interna-
tionalization, you may not get the results
you expect for searches in foreign lan-
guages, especially with search terms that
include accented letters.

Remembrance of Things
Past
Search engine crawlers relentlessly wan-
der through the known Internet looking
for new sources of information. This
means that search results can and will
change. If you search for an old school
pal’s name once a day, you will immedi-
ately notice the changes if he or she
starts setting up a new homepage or
becomes famous overnight. Of course,
nobody has the time to perform that
kind of search manually, and it might be
difficult to keep track of the results.

Search Service
To make things easier for you, the buddy
script (Listing 2) is launched once a day
by a cronjob. buddy retrieves the first 25

results for a list of
names stored in
the ~/.buddy
configuration file.
buddy sends any
previously
unknown URLs,
along with an
extract from the
website content,
to a preconfigured
email address.
This keeps you up
to date by letting
you know if one
of the buddies on
your buddy list
turns up as, say, a
Nobel prize nomi-
nee.

Buddy keeps any URLs it finds in a
cache for a period of one month. Every
time it finds a cached name again, the
caching period gets extended. Names
that have been missing for a month will
be rediscovered as if they were new, thus
simulating a bad memory and cheering
you up occasionally.

Line 12 of the script expects the email
address to which it should send the
updates. If you launch buddy at the com-
mand line and specify the -v (for ver-
bose) option, line 24 initializes the
Log4perl framework with a log level of
$DEBUG, making the log more informa-
tive. By default, you will only see log
messages with WARN or higher priority.

Line 26 declares the mailadd function
(which is defined later on) to tell Perl
that this is a new function, allowing any
calls that precede the definition to do so
without needing parentheses. mailadd,
which starts at line 93, holds the accu-
mulated mailtext in an our variable
called $maildata. The mailsend function
in line 100 shares the same variable.
Calls to mailadd simply append text to
$maildata. The call to close() in line 118
then sends the completed message to the
address you supplied (Figure 1) using
the Mail::Send module from CPAN.

The plough function, which was
exported by the Sysadm::Install module,
expects a callback function and a file-
name in line 30. The function parses the
buddy configuration file ~/.buddy, calls
the callback function after each line it
has read, and passes the content of the
line to the $_ variable. Line 31 discards

lines commented with #, and the chomp
command bites off the newline. Line 33
pushes any buddies the process has
found to the end of the continually
expanding @buddies array.

Line 53 then uses the Results()
method to contact the Yahoo service,
wrapping your buddy’s name from
the configuration file in double quotes,
and then passing it as a quoted string
qq{"$buddy"} with the Doc parameter,
as this is a search for a Web document.

The list of resulting objects returned
in the response uses the Url() and
Summary() methods to output the
URL and an extract for any hits. The
file cache (line 37) is set up behind
the scenes by Cache::FileCache in
/tmp/FileCache. The cache keeps any
entries for 30 days, as specified by
default in the default_expires_in para-
meter.

As the web service strictly requires
UTF-8, the names in ~/.buddy have to
be UTF-8 encoded. This is irrelevant if
the names are in plain English, but
accented characters are a different story.
If you have a recent Linux distribution,
your editor will store accented charac-
ters in UTF-8 by default. If you still use
Latin 1, you can run a tool such as toutf8
with a command line such as toutf8
buddy.latin1 >~/.buddy to quickly
convert the file:

toutf8
use Text::Iconv;
my $conv = U
Text::Iconv->new("Latin1",U

01 #!/usr/bin/perl -w

02 #############################

03 use strict;

04

 05 my $term = "@ARGV";

06

 07 die

08 "usage: $0 word/phrase ..."

09 unless length $term;

10

 11 use Yahoo::Search AppId =>

12 "YOUR_APP_ID";

13

 14 my ($suggestion) =

15 Yahoo::Search->Terms(

16 Spell => $term);

17

 18 if (defined $suggestion) {

19 print "Corrected: ",

20 "$suggestion\n";

21 } else {

22 print "No suggestions\n";

23 }

Listing 1: typo

Figure 1: Old school pals have popped up on the Web. The script mails

you a summary of the hit list.

PROGRAMMINGPerl: Yahoo API Scripting

71ISSUE 56 JULY 2005W W W. L I N U X- M A G A Z I N E . C O M

"UTF-8");
print $conv->convertU
(join '', <>);

You only need to modify the email
address in line 12 of the script to match

your own needs. A cron entry such as 0
5 * * * $HOME/bin/buddy will call the
script every morning, query the search
engine, update the cache, and send you
an email message with all changes since
the last search. It works best with

uncommon names; tracking “John Doe”
will generate too much noise.

Picture This
The new service also supports searching
for images. The search engine will

001 #!/usr/bin/perl -w

002 #############################

003 # buddy - Track search result

004 # changes over time.

005 # 2005, m@perlmeister.com

006 #############################

007 use strict;

008

 009 my $BUDDY_FILE =

010 "$ENV{HOME}/.buddy";

011 my $EMAIL_TO =

012 'email@somewhere.com';

013

 014 use Sysadm::Install qw(:all);

015 use Yahoo::Search;

016 use Text::Wrap;

017 use Cache::FileCache;

018 use Log::Log4perl qw(:easy);

019 use Getopt::Std;

020 use Mail::Send;

021

 022 getopts("v", \my %o);

023

 024 Log::Log4perl->easy_init(

025 $o{v} ? $DEBUG : $WARN);

026 sub mailadd;

027

 028 my @buddies = ();

029

 030 plough sub {

031 return if /^\s*#/;

032 chomp;

033 push @buddies, $_;

034 }, $BUDDY_FILE;

035

 036 my $cache =

037 Cache::FileCache->new({

038 namespace => "Buddy",

039 default_expires_in =>

040 3600 * 24 * 30,

041 });

042

 043 my $search =

044 Yahoo::Search->new(

045 AppId => "YOUR_APP_ID",

046 Count => 25,

047);

048

 049 for my $buddy (@buddies) {

050 DEBUG "Search request ",

051 "for '$buddy'";

052 my @results =

053 $search->Results(

054 Doc => qq{"$buddy"});

055

 056 my $buddy_listed = 0;

057

 058 DEBUG scalar @results,

059 " results";

060

 061 for my $result (@results) {

062 if($cache->get(

063 $result->Url()

064)) {

065 DEBUG "Found cached: ",

066 $result->Url();

067

 068 # Refresh if found

069 $cache->set(

070 $result->Url(), 1);

071 next;

072 }

073

 074 mailadd

075 "\n\n### $buddy ###"

076 unless $buddy_listed++;

077

 078 mailadd $result->Url();

079

 080 $cache->set(

081 $result->Url(), 1);

082

 083 mailadd fill(" ",

084 " ",

085 $result->Summary()),

086 "";

087 }

088 }

089

 090 mailsend();

091

 092 #############################

093 sub mailadd {

094 #############################

095 our $maildata;

096 $maildata .= "$_\n" for @_;

097 }

098

 099 #############################

100 sub mailsend {

101 #############################

102 our $maildata;

103

 104 return

105 unless defined $maildata;

106

 107 DEBUG "Sending email: ",

108 "$maildata";

109

 110 my $msg =

111 Mail::Send->new();

112

 113 $msg->to($EMAIL_TO);

114 $msg->subject(

115 "Buddy Watch News");

116 my $fh = $msg->open;

117 print $fh $maildata;

118 close $fh;

119 }

Listing 2: buddy

Perl: Yahoo API ScriptingPROGRAMMING

72 ISSUE 56 JULY 2005 W W W. L I N U X- M A G A Z I N E . C O M

retrieve a number of image URLs that
match your search key, passing them to
the slideshow script (see Listing 3, on
Page 74), which will display them at
5 second intervals in your browser
window.

The script first displays a simple
search form (Figure 3). When a user
enters a search key into the form (for
example, San Francisco) and clicks the
Search button, the CGI parameter q is
set, and line 68 calls the Results()
method of the Yahoo::Search package.
The Image parameter passes the search
key, Count limits the results to 50 hits,
and a setting of AllowAdult with a value
of 0 at least tries to prevent adult content
from suddenly popping up on your
screen.

As the text in the image captions is
again UTF-8, the header() method in line
26 tells your browser that the dynami-
cally generated web page is UTF-8
encoded.

Cache Memory
The slideshow CGI script stores the
results of your search. In other words,
slideshow stores the image URLs and
summary texts stored as an array of
arrays in a persistent file cache. This
technique ensures that the slide show
projector does not need to query the

search engine
each time the pro-
jector moves on to
the next image.

The Cache::File-
Cache module
stores key-value
pairs where the
values are simple
scalars, but there
is no support for
nested structures.
The Storable mod-
ule can help you
work around this
lack of support for
nested structures. The Storable module's
freeze() function can serialize a data
structure before placing it in the cache. If
the serialized data needs to be retrieved
from the cache, the de-serializer thaw()
is called to convert the data back to the
original nested Perl data structure.

Details
To prevent the CGI script from inad-

vertently using unchecked and insecure
incoming data for system calls (i.e., to
avoid the possibility of tearing a gaping
security hole in the application), the -T –
for taint mode – option is enabled right
at the start of the script in the Shebang
line following the call to the Perl inter-

preter.
The first if block

(line 28) is
enabled if the
script is called
both with the
query string, and
with the serial
number of the
current image. In
this case, the
cache will hold a
sequence of image
URLs with match-
ing captions from
a previous call.
Line 31 thaws the
array of arrays,
and the modulo
operator in line 35
ensures that the
incremented serial
number will
always point to a
position within
the array and not

to somewhere out of bounds.
The refresh() function called in line 36

using the parameter 5 is defined in line
107. This refresh() function returns
HTML sequences, which pass meta tags
to the browser to tell the browser to load
the next image after waiting for the
number of seconds specified with the
interval parameter passed to it.

The optional second parameter for
the refresh() function specifies whether
the next URL to be loaded by the
script will display the next image (next_
url simply increments the numeric
parameter s), or whether the script
should go back to the starting page with
the original URL. Line 88 uses this sec-
ond parameter if no search results are
found.

Installation
To install the script, simply put it in the
cgi-bin directory of your web server, type
in a search query, sit back, and relax
while watching other people’s vacation
pictures! ■

[1] Listings for this article:
http:// www. linux-magazine. com/
Magazine/ Downloads/ 56/ Perl

[2] Yahoo Developer API Homepage:
http:// developer. yahoo. com

INFO

Figure 2: A query for “San Francisco” in the input mask returned a

slide show with a view of the city.

Figure 3: The image search in Listing 3 gives you an exciting slide

show, mainly containing private vacation snapshots.

Michael Schilli works
as a Software Devel-
oper at Yahoo!,
Sunnyvale, Califor-
nia. He wrote “Perl
Power” for Addison-
Wesley and can be
contacted at schilli@perlmeister.
com. His homepage is at
http://perlmeister.com.

T
H

E
 A

U
T

H
O

R

PROGRAMMINGPerl: Yahoo API Scripting

73ISSUE 56 JULY 2005W W W. L I N U X- M A G A Z I N E . C O M

001 #!/usr/bin/perl -wT

002 #############################

003 # slideshow - Yahoo image

004 # search as slideshow CGI

005 # 2005, m@perlmeister.com

006 #############################

007 use strict;

008

 009 use CGI qw(:all);

010 use Yahoo::Search AppId =>

011 "YOUR_APP_ID";

012 use Cache::FileCache;

013 use Storable qw(freeze thaw);

014

 015 my $cache =

016 Cache::FileCache->new({

017 namespace => 'slideshow',

018 default_expires_in =>

019 3600,

020 auto_purge_on_set => 1,

021 });

022

 023 my $data;

024

 025 print header(

026 -charset => "utf-8");

027

 028 if(param('q')

029 and defined param('s')) {

030

 031 $data = thaw $cache->get(

032 param('q'));

033

 034 my $seq = param('s');

035 $seq %= scalar @$data;

036 print refresh(5);

037 print center(

038 a(

039 { href => url() },

040 "Stop"

041),

042 a(

043 { href => next_url() },

044 "Next"

045),

046 p(),

047 b(param('q')),

048 ":",

049 i($data->[$seq]->[1]),

050 p(),

051 img(

052 { src =>

053 $data->[$seq]->[0]

054 }

055),

056 p(),

057 a(

058 { href =>

059 $data->[$seq]->[0]

060 },

061 $data->[$seq]->[0]

062),

063);

064

 065 } elsif(param('q')) {

066

 067 my @results =

068 Yahoo::Search->Results(

069 Image => param('q'),

070 Count => 50,

071 AllowAdult => 0,

072);

073

 074 if (@results) {

075 for (@results) {

076 push @$data,

077 [

078 $_->Url(),

079 $_->Summary()

080];

081 }

082 print refresh(0);

083 $cache->set(

084 param('q'),

085 freeze($data)

086);

087 } else {

088 print refresh(0, 1);

089 }

090 } else {

091 print h2(

092 "Slideshow Search"),

093 start_form(),

094 textfield(

095 -name => 'q'),

096 submit(

097 -value => "Search"),

098 end_form(),

099 font(

100 { size => 1 },

101 "Powered by " .

102 "Yahoo Search"

103);

104 }

105

 106 #############################

107 sub refresh {

108 #############################

109 my ($sleep, $reset) = @_;

110

 111 return start_html(

112 -title => "Slideshow",

113 -head => meta({

114 -http_equiv =>

115 "Refresh",

116 -content =>

117 "$sleep, URL=" . (

118 $reset ?

119 url() :

120 next_url())}));

121 }

122

 123 #############################

124 sub next_url {

125 #############################

126 my $s = param('s');

127 $s ||= 0;

128

 129 return

130 sprintf "%s?q=%s&s=%d",

131 url(), param('q'),

132 $s + 1;

133 }

Listing 3: slideshow

Perl: Yahoo API ScriptingPROGRAMMING

74 ISSUE 56 JULY 2005 W W W. L I N U X- M A G A Z I N E . C O M

