Serve a daily dose of information

APPET

When tackling something complex, such as a foreign language
or Vim commands, digesting small bits of knowledge might be
more effective than consuming a super-sized meal of informa-
tion. This month’s Perl column gives you a method of serving up

knowledge snippets by email. BY MICHAEL SCHILLI

o matter how good your com-
mand of English might be, there

is always room for improve-

ment. Or do you already know what “cy-

nosure” or “exonym” means? Because I
subscribe to “A.Word.A .Day” (AWAD)
[2], I receive a new word every day by
email. Figure 1 shows how the service
describes the daily word in simpler
terms and provides examples of the
word in action.

A Tip a Day

Because this approach is so effective, I
thought of extending it to other fields. If
there are daily tips for the Vim editor,
why not have them for Perl? Or for the
Java pitfall of the day? All it would take
would be a script that stores the tips,
and a cronjob that sends the tips to a list
of subscribers every morning.

Perl: Daily Tip

IZERS

The xaday script (Listing 1) uses an
SQLite database [3] to store the tips but
supports editing of tips with a normal
editor. When called with the -m parame-
ter and an email address, xaday will
send off one tip, remember the date of
publication in the database, and find an
unpublished tip when called upon again.
The script works its way through the
queue, day by day, entry by entry, until
it runs out of entries. To add new tips to
the queue, call xaday -e and add the tips
to the database (Figure 2).

As with Perl’s POD format, the tips are
separated by = headl headers in the ed-
ited file. The headline becomes the sub-
ject line, and the body text becomes the
body of the outgoing email tip. When
you store the modified file, xaday pushes
the content back into the database. You
can add new tips and modify enqueued

tips or tips that have already

.|- bh e mpes fesinans [am e been publlshed
& 1 R R =
s aw D T Pessn P Taes PSS D PSS = H
B il ‘| Figure 3 shows where the
information snippets end up
AL AL T ! in the tips table of the data-
base. The SQLite client
sl L] might not have a smart
ol o ; ammnen s ASCII art display like
: PR T L —— MySQL, but playing with the
. e e it i e .width, .mode, and .headers
bty Fuewr Preee (e bwlbee? e F . .
ey — formatting commands im-
St s e el s P proves output readability.
e b | The application just needs
LE L L LER. . N 2] . .
Farsrn P Suymy Cactcers ar e a simple table with the col-
i enleremen i B
i T rm— e umns head, text, and pub-
i i " lished to store the heading,
L 5| Py B | 8 the body text, and the date

Figure 1: Expanding vocabulary with A.Word.A.Day.

of publication as your tip ar-

NOVEMBER 2007

PROGRAMMING

chive. The SQL commands shown in
xaday.sql (Figure 4) set up the table. The
SQLite client, sqlite3, runs the com-
mands as follows:

sqlite3 dbname.dat <xaday.sql

The database ends up in a regular file
named dbname.dat. The Perl client later
will use SQL commands to access this
unusual database.

A Bed of Roses

Querying a database usually involves
writing SQL and embedding it in Perl;
xaday uses DB::Rose from CPAN, in-
stead. The Rose loader takes a quick
sniff of the database table when
launched; the make_classes() method
automatically creates the mappings in
your Perl code.

Users can call xaday with the -e option
to add more tips. Line 39 in Listing 1 cre-
ates a temporary file that feeds the editor
for this purpose.

The user needs to append the new tip
with a =head1 header. The EDITOR en-

ISSUES4 G9

PROGRAMMING

vironment variable tells you which edi-
tor is currently set; vim, emacs, or even
pico are common settings.

File Changes
After calling the editor, the script checks
to see whether the edited file has
changed or whether the user has de-
cided to discard the changes.

In the latter case, the program exits
with a message. If the file has changed,
then the program has to push the

Listing 1: xaday

001 #!/usr/bin/perl -w

LA E LA AESE LA AL LA IE L dE L L

002 ArTrIrr e r e ar e ar e ir e ir i iir
003 # xaday - A tip every day
004 # m@perimeister.com, 2007

005 LA AL AL AL LA dE LI E L
EFIFIFTFAE1FIF IR 1F 1R IF TR PR IR TR PR TR TF P 1F1F 117

006 use strict;

007 use Rose::DB::0bject::
Loader;

008 use Getopt::Std;
009 use File::Temp qw(tempfile);

010 use Sysadm::Install qw(:all);

011 use Mail::Mailer;

012
013 my $RECSEP = qr/"=headl/;
014 my $HEAD = "=headl";

015 my $MAIL_FROM =

016 'me@_foo.com';

017

018 getopts("d:Tepm:f:",
019 \my %opts);

020

021 die "usage: $0 -d dbfile

022 unless $opts{d};

023

024 my $loader =

025 Rose::DB::0bject::Loader
026 ->new(

027 db_dsn =>

028 "dbi:SQLite:
dbname=$optsi{d}",

029 db_options => {
030 AutoCommit => 1,
031 RaiseError => 1

032 1},
033);
034

035 $1oader->make_classes();
036

70 ISSUEs84

Perl: Daily Tip

changes into the database. To help the
program decide which entries are from
the database and which are new input
from the user, xaday appends an ID in
curly brackets to every header in the da-
tabase before displaying the file in the
editor. If the file to be edited has a line
that reads " = head1 Title {13}", the
entry must be from the line with ID 13
in the database.

Modifying the numbers will change
the order of the entries because the

037 if ($opts{el or $opts{1}) {
038 my ($fh, $tmpf) =

039 tempfile(UNLINK => 1);
040 my $tips =

041 Tip::Manager

042 ->get_tips_iterator();
043 my $data_before = "";
044

045 while (my $tip
046 $tips->next())

047 |

048 $data_before .= "$HEAD "
049 . $tip->head() . " {"
050 . $tip->id(O) .ot
051 . "\n\n"

052 . $tip->text()

053 . "\n\n";

054 }

055 if ($opts{1}) {

056 print $data_before;
057 exit 0;

058 |}

059 Dblurt($data_before,

060 $tmpf);

061 system(

062 "$ENV{EDITOR} $tmpf");
063 my $data_after =

064 slurp($tmpf);

065 die "No change"

066 if $data_before eq

067 $data_after;

068

069 db_update(\$data_after);
070 }

071

072 if ($opts{f}) {

073 db_update($opts{f});
074)

NOVEMBER 2007

email client simply follows those IDs in
ascending order. When the program sees
a new entry without an ID, it assigns a
new number and adds the entry to the
database. The AUTOINCREMENT mecha-
nism in the SQL definition makes sure
that new entries are assigned unused IDs
in ascending order.

Digging Down the Stack

To dispatch mail, the script needs to lo-
cate the tip with the lowest ID that does

075

076 if ($opts{m}) {

077 my $tips =

078 Tip::Manager->get_tips(
079 query => [

080 "published" => undef
081 1

082 sort_by => 'id',

083 Timit => 1,

084)s

085 if (@$tips) {

086 $tips->L01->published(
087 DateTime->today());
088 $tips->L[0]->update();
089 mail(

090 $optsi{m},

091 $tips->L[0]->head(),
092 $tips->[0]1->text()
093)s

094 }

095 else {

096 die

097 "Nothing left to publish";
098 |}

099 }

100

101 AL AEAE LA AL E AL LI AE L IEEEE L
1EFIFIFTFTEIFIF TR IF IR IR TR PR IR TR AR IR TR TF 1 IF1F 1717

102 sub text2db {

103 tHHHHHEHHHHHHHHHEHHHHHHHHEEERE
104 my ($text) = @_;

105 $text =""

106 unless defined $text;
107

108 my @fields = ();

109

110 while ($text =~

111 /N($RECSEP.*?)

112 (?=$RECSEP|\s*\Z)/smgx

not have a date in its published column,
but a NULL value instead.

In line 78, get_tips() fires off an SQL
query under the hood to search for all
records with a published entry of NULL
and sorts the resulting list in ascending
order of IDs.

The limit is set to 1 to make sure that
only the first result is returned from the
database. The published method passes
DateTime- > today() as a parameter to
assign today’s date to the returned entry

113)

114 {

115 my ($head, $info, $tip)
116 = rec_parse($1);

117 $tip =~ s/\s+\Z//;

118 $tip =~ s/\A\s+//;

119 push @fields,

120 [$head, $info, $tip 1;
121}

122 return \@fields;

123 }

124

125 LA AL IE L AEAE LA AL LA IE L E L
1EFIFIFIFIEIFIFTFTE IR IF TR 1R IR IR TF IR IR IR TR 1F IF TR 11

126 sub rec_parse {

127 {HHHHHHEHHHHHHHHHEHEEHHHHHEEE
128 my ($text) = @_;

129

130 if ($text =~

131 /$RECSEP\s+(.*?)

~

132 (2 \NsH\{CL*2)\ 1) ?

133 $

134 o)

135 /sSmgx

136)

137 |

138 return ($1, $2, $3);
139}

140

141 return undef;

142 }

143

144 HHHHHHHHHHHHHHHHHHHHHHHHHHHE
145 sub db_update {

146 HHHHHHEHHHHHHHHHEHHHHEHHHHEHE
147 my ($in) = @_;

148

149 my $data;

150

Perl: Daily Tip

before update() stores the change in the
database.

After using all the tips, the script dies
with an error message in line 96, which
causes the cronjob to notify the user of
this issue by email.

Looking to the Future

The text2db() function uses a regular ex-
pression with a positive look ahead to
separate individual tip entries. The con-
struct that starts with (2= does not con-

151 if (ref($in)) {
152 $data = $%in;

153 |}

154 else {

155 $data = slurp($in);
156 |}

157

158 my $fields =

159 text2db($data);
160

161 my @keep_ids =

162 map { $_->[1] } @$fields;
163 my $gone;

164 if (@keep_ids) f{

165 $gone =

166 Tip::Manager

167 ->delete_tips(

168 where => [

169 "1id" => \@keep_ids
170]

171)s

172}

173 else {

174 $gone =

175 Tip::Manager

176 ->delete_tips(

177 all => 1);

178 1}

179 print

180 "$gone rows deleted\n"
181 if $gone;

182

183 for (@$fields) {
184 my ($head, $info, $tip)

185 = @$_;
186
187 my $rec;
188

NOVEMBER 2007

PROGRAMMING

sume matching expressions, but simply
takes a sneak preview.

After finding a paragraph that starts
with =headl, text2db() passes it on to
the rec_parse() function defined in line
126. The function attempts to extract the
column values for head, id, and text. If
it is successful, the function returns all
three values; otherwise, it returns undef.
The text2db() function also performs
some cosmetic surgery and removes
white space at the top and tail.

Listing 1: xaday

189 if (defined $info) {
190 $rec =

191 Tip->new(

192 id => $info);

193 $rec->1oad();

194 $rec->head($head);

195 $rec->text($tip);

196 $rec->update();

197 }

198 else {

199 $rec = Tip->new(

200 text => $tip,

201 head => $head,

202)3

203 $rec->save();

204 }

205}

206 }

207

208 THHHHHHHHHHHHHHHHHEHHHHEHHHH!
209 sub mail {

210 HHHHHHHHHHHHHHHHHHHHHHHHHHHE

211 my ($to, $head, $body) =
212 @_;

213

214 my $mailer =

215 Mail::Mailer->new();
216

217 $mailer->open(

218 {

219 "From' => $MAIL_FROM,
220 'To' => $to,

221 'Subject' => $head,
222 }

223);

224 print $mailer $body;
225 close $mailer;
226 }

ISSUES4 71

Cemter A Line

the antire File, e
11.5rn

Duibt withail Senving

sarhd el am wmll.
wpllL U wlesdon verlloslli

right=hand aide,

1.1

To align & line at the center, types soe, To center

prople wme ol Tor thin, Hessser, 70 is cossensd

In order Lo split the current windou wertieally. wps
JETEL-M v. This sill open s eeply wisdes on Lhe

=I=]s content of a newly created
Tip class object from the
database; updates the indi-
vidual fields with the
head(), text(), and other
methods; and then calls
update() to write the data
from local memory into
the database.

If $info is undefined,
lines 199 through 201 sim-
ply create a new object
and set the values via the

nil

Figure 2: The sender can add new tips manually with a

normal editor, like the three Vim tips here.

The db_update() function in line 145
expects either a filename (as a scalar) or
a string (as a reference) from which to
take input data.

The function calls text2db(), extracts
the headlines and bodies of all tips, and
discovers which entries the user has de-
leted from the original database. The
function stores all IDs of preserved and
new records in the @keep_ids array.

Refreshing Rose

The delete_tips() method uses the "/id"
= > \@keep_ids condition to delete re-
cords from the database for those ID
fields that do not match any of the val-
ues in the @keep_ids array.

If the array is empty, DB::Rose refuses
to delete all the entries. In this case, line
176 of the else branch issues a delete_
tips() call with the all flag set. The script
displays the number of rows deleted on
standard output in both cases.

Line 183 iterates over all the tips de-
fined in the editor. The script updates
the corresponding database entry for
those tips that have a predefined ID, as
indicated by a defined scalar $info. To
do this, Rose first runs load() to load the

Al iLed wimdekog dal
Ls wersisn 3.1.3

tar ~hwelp” For isslructions
fsgqlined .ull WULL
gl iney aldih F 2 30 5
wqlila? made ol
fagl i ley el on
selile” sxleci ® Troe Lhpa:
1d sl Lexl
1 Cenier o Lirs
2 Duit witbaut Seving Mast

I;-qil.ll:l

To align n lirs oi @ HULL
la wse iql HULL
(3 Bplie the uindos wer Tn scder Ls aplit th HLL

head and text methods.
The save() method inserts
the record into the data-
base, and a new unused ID is assigned
via the database’s AUTOINCREMENT
mechanism.

Outgoing mail is dispatched by the
Mail::Mailer module from CPAN. The
mail() function in line 209 only expects
the receiving address, the header, and
the content of the tip and then talks to
the local Sendmail daemon to get it de-
livered to the recipient.

Installation

All the modules I have used here are
available from CPAN, and a CPAN shell
will quickly resolve the dependencies.
The MAIL_FROM variable in line 15
must be modified to reflect the mailing
list used for the tips. To allow the script
to send mail at 7:30am every morning,
the line

30 07 * * * /path_to/xaday?
-d /path_to/dbfile.dat -m2
mlist@somewhere.com

creates a cronjob. dbfile.dat is the SQLite
file, and the mailing list specified with
-m is the target address from which sub-
scribers will anxiously await new tips
every day. To fill the data-
base with tips, just call

xaday -d 2
/path_to/dbfile.dat -e

add your tips in the editor
that automatically
launches, and save your
changes. As an alternative
to the editor, you can pass

il i

Figure 3: The tips are stored in an SQLite database. With
just a couple of formatting instructions, the client will dis-

play the table in a readable way.

72 ISSUEs84

in a pre-filled text file to
the script using the -f op-
tion. The -l option lets you

NOVEMBER 2007

PROGRAMMING Perl: Daily Tip

display the data fed to the database thus
far to check whether your tips have
reached the database correctly.

Extensions

If you prefer to dispatch tips on week-
days only, you can either modify the
cronjob or change the script to query the
day of the week and quit if it happens to
be a Saturday or Sunday.

The Perl (localtime(time))[6]) con-
struct will give you the weekday as a
number from 0 (Sunday) to 6 (Satur-
day). To have a break on national holi-
days, you can add an extra table holi-
days, which stores national holidays in

TAlLYT 4

W THIFGR HIH‘I‘ ECY AT OTRCETMONT .
hesl TIXI .

et FEXT.

[EECNE L

TeadaynglT 6L 1080 1.0 Ll

Figure 4: The xaday.sql file is passed in
to the SQLite client. The SQL commands
create a database table.

its date column. The script could offer a
command-line option, such as -D, to add
a specified date to the table.

Conclusion

Of course, the tips themselves really are
your most important commodity. It
makes sense to compose tips for a week
in advance, for example, to avoid a cou-
ple of vacation days from interrupting
the tip service.

And, for the record, “cynosure” is an
object that serves as a focal point of at-
tention; an “exonym” is a place name
not used by the local inhabitants. M

[1] Listings for this article:
http://www.linux-magazine.com/
Magazine/Downloads/84

[2] A.Word.A.Day (AWAD):
http://wordsmith.org/awad/

[3] SQLite: http://www.sqlite.org

Michael Schilli works

as a Software Devel- ?
oper at Yahoo!,
Sunnyvale, Califor-

nia. He wrote “Perl -
Power” for Addison- Py
Wesley and can be 5 =
contacted at mschilli@perlmeister.
com. His homepage is at
http://perlmeister.com.

T

[+
o
=
-
=
<
Ll
=
-

