
W
hen it comes to wealth man-

agement, the performance of a

single stock in your portfolio

is less important than the overall perfor-

mance. Although online financial ser-

vices might give you neat graphs of

share price developments for individual

stocks, or even a comparison of two val-

ues, they do not offer you a tool that lets

you monitor the share price develop-

ment of your complete portfolio at a

glance. A Perl script changes this.

Figure 1 shows the configuration file

(pofo1.txt) for a portfolio in a text editor.

Each line starts with a date in ISO nota-

tion followed by the transaction type – a

purchase (in) or a sale (out) – of an indi-

vidual share, the ticker symbol, and the

number of shares. The file also can han-

dle cash transactions; instead

of the ticker symbol, you see

the word cash.

To keep portfolio manage-

ment from becoming a tedious

typing session, the script auto-

matically calculates the costs

and returns of share transactions

at the current rate and modifies

the cash balance. The program

does not take charges

into account,

instead, it

 relies on the

user adjusting

the balance every now and then manu-

ally by using a cash entry and a chk

transaction.

The balance of the portfolio in Figure

1 is exactly US$ 20,000 on January 1,

2007. Nine days later, the

owner has acquired 50 Amazon shares,

20 IBM shares, 10 Google shares, and

200 Motorola shares at the applicable

daily rates. The investor doesn’t touch

the portfolio for the rest of the year. The

graph in Figure 3 shows how these four

stocks have developed. While the Ama-

zon and Google shares made consider-

able gains, Motorola performed poorly,

affecting the performance of the portfo-

lio as a whole at year end. All told, the

portfolio was up slightly.

Meanwhile, the portfolio

owner in Figure 2 invested US$

20,000 and immediately spent the

money on 200 CVS (the drug-

store) shares. A week later, the in-

vestor bought 150 Amazon shares,

which were sold again four

months later. In September, the in-

vestor predicted a rise in the

Google share price and invested in

30 shares.

The graph in Figure 4 shows a far

higher return and also shows that

the stack of share price graphs can

cause confusion. The order in which

the stocks are shown stays the same,

but with some jumps on days in

which the portfolio owner buys or

sells shares. Also note the pink area

at the bottom of the graph that repre-

sents the cash balance.

The portfolio graphs for both inves-

tors (Figures 3 and 4) were created by

the pofo Perl script (Listing 2), which

retrieves the buying and selling data of

shares from a configuration file.

Later in this article, I will describe

how the script works. The input files

We’ll show you a Perl script that helps you draw area graphs to keep

track of your portfolio’s performance. BY MICHAEL SCHILLI

Graphic display of portfolio stock values

SKETCHING CURVES

a
u

ris
, F

o
to

lia

Perl: Portfolio WatchPROGRAMMING

70 ISSUE 90 MAY 2008

070-076_perl.indd 70 12.03.2008 11:06:42 Uhr

are shown in Figures 1 and 2. The script

expects the configuration file as com-

mand-line parameter. Calling pofo pofo1.

txt outputs an image file named posi-

tions.png with the graphs after a compu-

tation that can take up to several min-

utes if many different stock or long time

frames need to be calculated.

Daily Rates
For each day in the graph, pofo ascer-

tains the individual stocks in the portfo-

lio, retrieves the daily prices, and multi-

plies them by the number of shares. The

RRDtool (Round Robin Database tool)

[1], which is designed to visualize net-

work traffic and computer load, stores

the daily data and then pours it into an

easily readable area graph. It assigns col-

ors to the various stocks/securities from

a predefined palette, and draws a legend

at the bottom of the graph to explain the

assignments.

Historic share prices for all known

shares are available online; however, the

script would be unbelievably slow if it

were to retrieve the figures for each day

you ask it to display. Instead, the script

uses the CachedQuote module from List-

ing 1, so the first time you request the

price for a share, it retrieves all the

prices in a time window starting one

year in the past and reaching up to the

current day. All values, whether it needs

them or not, are stored locally in an

SQLite database for subsequent use.

Speed Boost
When the client requests the next daily

share price, CachedQuote simply reads

the value from its database repository

 instead of loading the values over the

network. The client does not notice any-

thing, apart from a far faster response

to subsequent requests.

If a customer queries a share price on

a Sunday, CachedQuote notices that

there is no share price for the day in

question because stock exchanges do

not work on weekends and public holi-

days. In this case, CachedQuote is intelli-

gent enough to return the last available

price instead of a black hole.

Share Price
The CachedQuote.pm module uses the

Finance::QuoteHist::Yahoo CPAN module

to retrieve the share price data off the

web (Listing 1, lines 12, 109-137). The

cache retrieves the closing price, which

it stores in the $close variable. On receiv-

ing a web request, the Yahoo server can

return the share price data for a single

share for many years. CachedQuote.pm

leverages this and sends a request to the

server, requesting the data for one year

prior to the requested time up to the cur-

rent day (line 103). If the data is avail-

able in the cache, the module does not

issue a new request (line 43).

CachedQuote.pm uses the Cache::

Historical CPAN module to store and re-

trieve the share price data. The module

has a convenient interface for setting

date-based values, set(date, key, value).

To retrieve stored values it offers the

get(date, key) and get_interpolated(date,

key) methods. The key parameter works

like the key in a hash. If a share price is

missing for a specific day, get_interpo-

lated() retrieves the last available price

prior to the given date while get will re-

turn the data on a specific date or undef

if no data exists for that date.

Lightweight Database
Cache::Historical accesses an SQLite da-

tabase via the DBD::SQLite CPAN mod-

ule. SQLite is not under the GPL, but is

released under a Public Domain license;

the CPAN module includes the source

code for the file-based database. SQLite

supports requests in SQL syntax but

does without a database server, writing

the results directly to a local file instead.

CachedQuote.pm sets the SQLite data-

base file to /tmp/cached-quote.dat in line

21. If you prefer not to leave the cache in

a dangerous temporary directory, you

can change the default when you call the

Cache::Historical constructor – for exam-

ple, new(sqlite_file => "filename").

The quote() function (line 34) first

tries to retrieve the stock price with get()

(lines 39-41). If this action fails, the get()

method returns an undefined value,

which is recognized in line 44. Then the

module calls quote_refresh() to update

the cache for the period before and after

the requested date. After this, get_inter-

polated() should return a useful value.

At the same time, the code decides

whether the daily price is unavailable

because the stock exchange was closed

on the day in question or because the

range is not yet cached. If the script dis-

covers that the day was a Sunday, the

module should not try to retrieve the lat-

est share prices from the server because

there will not be any until Monday.

Therefore, the quote_refresh() function

calls since_last_update() in line 65 to

check the period since the last cache

 refresh. This value is stored as a Date-

Time::Duration object, and delta_days

converts this to whole days. If the cache

is less than one day old, an update is not

performed (lines 69-72, 79-83), and the

last available share price (typically from

Friday) is then used (interpolation

method in line 49).

Date and Time
The CPAN DateTime module interface is

so convenient that developers normally

do not bother using anything else, but

the Finance::QuoteHist::Yahoo module

insists on dates in US standard format:

mm/ dd/ yyyy. Thus, the date_format()

function in line 140 calls the strftime()

method to convert DateTime objects.

The reverse case – converting a mm/

dd/ yyyy date to a DateTime object – is

handled by the dt_parse() function be-

ginning in line 148.

The DateTime::Format::Strptime mod-

ule defines a new format; the module’s

parse_datetime() method analyzes a

string passed in to it and returns a new

object if successful.

Figure 1: An investor puts a total of US$

20,000 into their portfolio in January 2007

(line 1) and uses the money to purchase a

mix of Internet shares (the following four

lines).

Figure 2: The investor swaps the items

in their portfolio several times a year.

 Purchases are indicated by an “in” action

and sales by an “out” action.

PROGRAMMINGPerl: Portfolio Watch

71ISSUE 90MAY 2008

070-076_perl.indd 71 12.03.2008 11:06:46 Uhr

To calculate the date one year ago

from a DateTime object, all you need to

do is call the object’s subtract() method

with the years => 1 parameter. Of

course, this modifies the object itself.

If you need the original value, you first

need to copy the contents to a new ob-

ject with clone()

(line 91).

Line by Line
The pofo script

(Listing 2) accepts

a configuration

file, such as pofo1.

txt in Figure 1, at

the command line.

The cfg_read()

function starting

in line 190 works

its way through

the lines of the

file, each of which

describes a share

transaction. The

function ignores

comments starting

with a pound sign, # (line 203) and lines

that contain nothing but blanks and

comments.

Format Conversions
Because the dates are formatted yyyy/

mm/ dd, pofo has a dt_parse() function

(line 226) to define the format and con-

vert the date entries to DateTime objects.

As an additional service, the cfg_read()

function accepts a reference to the

@symbols array, which it populates with

all ticker symbols that occur, avoiding

duplicates (lines 212-215).

The function returns a reference to

the%by_date hash that it populates. The

keys in this hash are date values in the

form of stringified DateTime objects.

The values are each mapped to an array

of transactions that have taken place on

the same days (line 217). In turn, each

transaction comprises an array that con-

tains the fields from the corresponding

configuration file line – that is, date,

 action, ticker symbol, and the number

of shares. Cash actions also occur here

with cash as their ticker symbol.

To see how many shares of one stock

the portfolio holds on a specific day, the

script needs to work its way through the

transactions that occurred in the portfo-

lio up to this date. Therefore, the for loop

starting in line 36 first works its way

through all actions before the $start

Figure 3: The diagram created by the Perl script from the data shown

in Figure 1 stacks the share values of the individual stocks to

 visualize both the portfolio performance and that of each stock.

 Listing 1: CachedQuote.pm
001 #############################

002 package CachedQuote;

003 # Cache stock closing prices

004 # Mike Schilli, 2008

005 # (m@perlmeister.com)

006 #############################

007 use strict;

008 use warnings;

009 use Cache::Historical;

010 use Log::Log4perl qw(:easy);

011 use

012 Finance::QuoteHist::Yahoo;

013

 014 #############################

015 sub new {

016 #############################

017 my ($class, %options) = @_;

018

 019 my $self = {

020 file =>

021 "/tmp/cached-quote.dat",

022 %options,

023 };

024

 025 $self->{cache} =

026 Cache::Historical->new(

027 sqlite_file =>

028 $self->{file});

029

 030 bless $self, $class;

031 }

032

 033 #############################

034 sub quote {

035 #############################

036 my ($self, $date, $key) =

037 @_;

038

 039 my $quote =

040 $self->{cache}

041 ->get($date, $key);

042

 043 return $quote

044 if defined $quote;

045 $self->quote_refresh($date,

046 $key);

047

 048 return $self->{cache}

049 ->get_interpolated($date,

050 $key);

051 }

052

 053 #############################

054 sub quote_refresh {

055 #############################

056 my ($self, $date, $symbol) =

057 @_;

058

 059 my ($from, $to) =

060 $self->{cache}

061 ->time_range($symbol);

062

 063 my $upd =

064 $self->{cache}

065 ->since_last_update(

066 $symbol);

067

 068 # Date available, no refresh

069 if (defined $to

070 and defined $from

071 and $date <= $to

072 and $date >= $from)

073 {

074 DEBUG

075 "Date within, no refresh";

076 return 1;

077 }

078

 079 if (defined $date

080 and defined $to

081 and defined $upd

Perl: Portfolio WatchPROGRAMMING

72 ISSUE 90 MAY 2008

070-076_perl.indd 72 12.03.2008 11:06:48 Uhr

date. The hash keys are dates, which the

sort command sorts in ascending order.

The loop calls the pos_add() function

for each transaction and puts the results

in the %pos hash. The hash assigns a

numeric value to each ticker symbol in

the portfolio. For shares, this is the num-

ber, and for cash, this is simply the sum.

The second for loop starting in line 79

then does the same calculation for every

single day after the start date, until the

current date.

Share acquisitions and sales addition-

ally trigger a movement in the cash item;

new shares cost money, and the pro-

ceeds from selling shares are credited to

the account. On every action, the daily

share price is applied; the data is pro-

vided by CachedQuote.pm.

RRD Tool Abstract
The area graph for the individual items

comes courtesy of RRDtool by Tobias

Oetiker [1]. The object-oriented RRD-

Tool::OO CPAN module helps to Perlify

and elucidate the unusual syntax of this

practical tool.

RRDtool stores

data from RRD ar-

chives by cumu-

lating the measur-

ing points of one

or more data

sources. In pre-

defined intervals,

the so-called step

size, an average is

calculated. In line

62 of Listing 2, the

pofo program sets

the step parameter

to 24 hours, telling

the RRD database

to expect just one

update per day.

The program

 assigns a separate

data source to each stock (map() call in

lines 65-72).

The RRD archive can store up to 5,000

values (line 74) before it starts to over-

write the values in typical RRD style. At

a rate of one new value a day, it will take

more than 10 years for this to happen.

The GAUGE parameter in line 69 stipu-

lates that RRDtool should accept the

 values directly and not cumulate them;

however, RRDtool refuses to accept

 values for times prior to the last stored

daily value; to cope with this, pofo de-

letes any remaining RRD files in line 55

Figure 4: The portfolio owner with the transaction data of Figure 2 is

in luck. The portfolio shows a considerable profit at the end of the

year. The jumps in the graph are caused by buying and selling shares.

Listing 1: CachedQuote.pm
082 and $date > $to

083 and $upd->delta_days < 1) {

084 DEBUG "Date ($date) above",

085 " cached range $from-$to",

086 " but cache up-to-date.";

087 return 1;

088 }

089

 090 my $start =

091 $date->clone->subtract(

092 years => 1);

093 if (defined $start

094 and defined $from

095 and $start > $from

096 and $to > $start)

097 {

098

 099 # no need to refresh old data

100 $start = $to;

101 }

102

 103 $self->quotes_fetch($start,

104 DateTime->today(),

105 $symbol);

106 }

107

 108 #############################

109 sub quotes_fetch {

110 #############################

111 my ($self, $start,

112 $end, $symbol) = @_;

113

 114 DEBUG "Refreshing $symbol ",

115 "($start - $end)";

116

 117 my $q =

118 Finance::QuoteHist::Yahoo

119 ->new(

120 symbols => [$symbol],

121 start_date =>

122 date_format($start),

123 end_date =>

124 date_format($end),

125);

126

 127 foreach

128 my $row ($q->quotes()) {

129 my ($symbol, $date, $open,

130 $high, $low, $close,

131 $volume) = @$row;

132

 133 $self->{cache}

134 ->set(dt_parse($date),

135 $symbol, $close);

136 }

137 }

138

 139 #############################

140 sub date_format {

141 #############################

142 my ($dt) = @_;

143 return $dt->strftime(

144 "%m/%d/%Y");

145 }

146

 147 #############################

148 sub dt_parse {

149 #############################

150 my ($string) = @_;

151 my $fmt =

152 DateTime::Format::Strptime

153 ->new(

154 pattern => "%Y/%m/%d");

155 $fmt->parse_datetime(

156 $string);

157 }

158

 159 1;

PROGRAMMINGPerl: Portfolio Watch

73ISSUE 90MAY 2008

070-076_perl.indd 73 12.03.2008 11:06:49 Uhr

and the RRDTool::OO constructor quickly

recreates them.

Line 16 of Listing 2 defines a freely se-

lectable color palette of RGB values. In

lines 46-53, pofo selects a value for each

share to be displayed from the @colors

array, allowing the viewer to distinguish

the stocks in the graph.

The %symbol_colors hash holds the

symbol/ color palette mappings. The

order in which the actions occur in the

configuration file defines the display

order in the graph.

The for loop starting in line 79 works

its way through the days to be displayed

in the graph. Each time it does, the if

condition in line 83 checks to see

whether transactions are available for

the current day and, if so, calls pos_

add() to add them, thus ensuring that

the global hash %pos contains the cur-

rent portfolio configuration.

The sum_up() function then deter-

mines the daily balance of the portfolio

and stores the cash values of the individ-

ual items in the %parts hash index by

the share ticker keys (or cash). After

this, the RRD object’s update() method

passes the hash in to the RRD database,

applying the time stamp for the day that

has just been processed (line 95). The

graph() method finally draws the graph

output in the positions.png file and

 Listing 2: pofo (continued on page 76)
001 #!/usr/bin/perl -w

002 #############################

003 # pofo - draw a stacked

004 # portfolio graph

005 # Mike Schilli, 2008

006 # (m@perlmeister.com)

007 #############################

008 use strict;

009 use CachedQuote;

010 use DateTime;

011 use RRDTool::OO;

012 use Log::Log4perl qw(:easy);

013 # Log::Log4perl->easy_init(

014 $DEBUG);

015

 016 my @colors =

017 qw(f35b78 e80707 7607e8

018 0a5316 073f6f 59b0fb);

019 my $cq = CachedQuote->new();

020

 021 my ($cfg_file) = @ARGV;

022 die "usage: $0 cfgfile"

023 unless $cfg_file;

024

 025 my @symbols;

026 my $acts =

027 cfg_read($cfg_file,

028 \@symbols);

029 my %pos = ();

030

 031 my $end = DateTime->today();

032 my $start =

033 $end->clone->subtract(

034 years => 2);

035

 036 for

037 my $act (sort keys %$acts)

038 {

039 next

040 if $acts->{$act}->[0]->[0]

041 >= $start;

042 pos_add(\%pos, $_)

043 for @{ $acts->{$act} };

044 }

045

 046 my $counter = 0;

047 my %symbol_colors;

048 for (@symbols) {

049 my $idx =

050 ($counter++ % @colors);

051 $symbol_colors{$_} =

052 $colors[$idx];

053 }

054

 055 unlink my $rrdfile =

056 "holdings.rrd";

057 my $rrd =

058 RRDTool::OO->new(

059 file => $rrdfile,);

060

 061 $rrd->create(

062 step => 24 * 3600,

063 start => $start->epoch() -

064 1,

065 map({

066 (

067 data_source => {

068 name => $_,

069 type => "GAUGE",

070 },

071)

072 } @symbols),

073 archive => {

074 rows => 5000,

075 cfunc => "MAX"

076 }

077);

078

 079 for (my $dt = $start->clone;

080 $dt <= $end;

081 $dt->add(days => 1)) {

082

 083 if (exists $acts->{$dt}) {

084 pos_add(\%pos, $_)

085 for @{ $acts->{$dt} };

086 }

087

 088 my %parts = ();

089 my $total =

090 sum_up(\%pos, $dt,

091 \%parts);

092 INFO

093 "*** TOTAL *** = $total\n";

094

 095 $rrd->update(

096 time => $dt->epoch(),

097 values => \%parts,

098)

099 if scalar keys %parts;

100 }

101

 102 $rrd->graph(

103 width => 800,

104 height => 600,

105 lower_limit => 0,

106 image => "positions.png",

107 vertical_label =>

108 "Positions",

109 start => $start->epoch(),

110 end => $end->epoch(),

111 map {

112 (

113 draw => {

114 type => "stack",

115 dsname => $_,

116 color =>

117 $symbol_colors{$_},

118 legend => $_,

119 }

120)

121 } @symbols,

122);

123

Perl: Portfolio WatchPROGRAMMING

74 ISSUE 90 MAY 2008

070-076_perl.indd 74 12.03.2008 11:06:50 Uhr

http://www.linux-magazine.com/DigiSub

Wherever you go...

...Linux Magazine
goes with you !

Read Linux Magazine anywhere with a Digital Subscription.

Access articles by logging into our site and downloading PDF fi les.

Find the Linux solutions you need with an easy keyword search.

Maintain your own paperless archive for convenient offl ine reading.

070-076_perl.indd 75 12.03.2008 11:06:53 Uhr

writes the legend at the bottom edge of

the image (lines 102-122). The listing

shown here only uses six colors for

shares, but nothing prevents you from

adding new colors to the @colors array

in lines 16-18.

In lines 31-34, pofo sets the display pe-

riod to two years in the past until today.

You can change this by modifying the

$start and $end variables. If you prefer

more information on what is going on

during the data processing state, just un-

comment line 13; easy_init() then ini-

tializes Log4perl, and the output from

the DEBUG instructions spread liberally

throughout the source code will be di-

rected onto your screen.

The script has no concept of stock

splits, in which the historic share price

data is changed in retrospect, thus leav-

ing invalid data in the cache. In this

case, you would need to delete the cache

file, /tmp/cached-quote.dat, thereby re-

moving the whole cash. Filling the file

again will not take much effort because

web requests to the financial servers effi-

ciently retrieve high volumes of data.

Enjoy watching your wealth grow! ■

[1] RRDtool: http:// www. rrdtool. org

[2]: Listings for this article:

http:// linux-magazine. com/ resources/

 article_code

INFO

 Listing 2: pofo (continued from page 74)
 124 #############################

125 sub sum_up {

126 #############################

127 my ($all, $dt, $parts) = @_;

128

 129 my $sum = 0;

130

 131 for my $tick (keys %$all) {

132 my $q = 1;

133 $q = $cq->quote($dt, $tick)

134 if $tick ne 'cash';

135 my $add =

136 $all->{$tick} * $q;

137 $parts->{$tick} = $add;

138 $sum += $add;

139

 140 DEBUG "Add: ",

141 "$all->{$tick} $tick $add";

142 }

143 return $sum;

144 }

145

 146 #############################

147 sub pos_add {

148 #############################

149 my ($all, $pos) = @_;

150

 151 my ($dt, $act, $tick, $n) =

152 @{$pos};

153 die "pos: @$pos"

154 if !defined $n;

155 DEBUG

156 "Action: $act $n $tick";

157

 158 my $q = 1;

159 $q = $cq->quote($dt, $tick)

160 if $tick ne 'cash';

161 my $val = $n * $q;

162

 163 if ($tick eq "cash") {

164 $all->{cash} += $val

165 if $act eq "in";

166 $all->{cash} -= $val

167 if $act eq "out";

168 $all->{cash} = $val

169 if $act eq "chk";

170 } else {

171 if ($act eq "in") {

172 $all->{$tick} += $n;

173 $all->{cash} -= $val;

174 } elsif ($act eq "out") {

175 $all->{$tick} -= $n;

176 $all->{cash} += $val;

177 } elsif ($act eq "find") {

178 $all->{$tick} += $n;

179 }

180 DEBUG "After: ",

181 "$tick:
$all->{$tick}";

182 }

183

 184 $all->{cash} ||= 0;

185 DEBUG "After: ",

186 "Cash: $all->{cash}";

187 }

188

 189 #############################

190 sub cfg_read {

191 #############################

192 my ($cfgfile, $symbols) =

193 @_;

194

 195 my %by_date = ();

196

 197 open FILE, "<$cfgfile"

198 or die

199 "Cannot open $cfgfile ($!)";

200

 201 while (<FILE>) {

202 chomp;

203 s/#.*//;

204 my @fields = split ' ', $_;

205 # empty line

206 next unless @fields;

207

 208 my $dt =

209 dt_parse($fields[0]);

210 $fields[0] = $dt;

211

 212 push @$symbols, $fields[2]

213 unless

214 grep { $_ eq $fields[2] }

215 @$symbols;

216

 217 push @{ $by_date{$dt} },

218 [@fields];

219 }

220

 221 close FILE;

222 return \%by_date;

223 }

224

 225 #############################

226 sub dt_parse {

227 #############################

228 my ($string) = @_;

229

 230 my $fmt =

231 DateTime::Format::Strptime

232 ->new(

233 pattern => "%Y-%m-%d");

234 return $fmt->parse_datetime(

235 $string);

236 }

Michael Schilli works

as a Software Devel-

oper at Yahoo!,

Sunnyvale, Cali for -

nia. He wrote “Perl

Power” for Addison-

Wesley and can be

 contacted at mschilli@ perlmeister.

com. His homepage is at

http:// perlmeister. com.

T
H

E
 A

U
T

H
O

R

Perl: Portfolio WatchPROGRAMMING

76 ISSUE 90 MAY 2008

070-076_perl.indd 76 12.03.2008 11:06:55 Uhr

