Automate your scans with these Perl scripts

Perl: Scan to PDF

At the Press of

a Button

A Perl script creates PDFs from magazine articles by automating a process triggered by the

simple press of a button. 8y michael Schilii

like to convert the articles into PDF for-
mat and store them in a database using
the artscan script [1].

ong-standing readers will be
aware that this Perl column has
been around for almost 10 years.
What they probably don’t know is
that the collected paper issues of Linux
Pro magazines in my apartment take up
feet of valuable shelf space. I have con-
sidered renting a unit in a storage facil-
ity, but the rents in San Francisco defi-
nitely put me off that idea.
Before I recycle the mags, though, I
would at least, for reasons of nostalgia,

Fighting Fatigue
Scanning programs such as xsane [2] and
simple-scan [3], a recent addition to
Ubuntu (Figure 1), will handle individ-
ual scans without much ado. But, faced
with the task of scanning several pages
from a magazine and then composing
the JPG images in a multipage PDF doc-
ument, even the most ambitious scanner
operators will soon feel the strain if they
don’t find a way to automate the pro-
cess.
A newly created Perl script by the
name of artscan guides you through
the scanning process thanks to a ter-
minal-based menubar, and it dis-
plays the step currently in progress
in a list box in real time (Figure 2).
As an additional benefit, you only
need to press the green button on the
scanner once you’ve set up the cur-
rent page containing the article on the
scanner bed (Figure 3).

To discard a series of individual im-
ages that you have already scanned,
press the N (for “new”) key in the termi-
nal UI, which tells the script to ditch the
scanner images that it is caching.

After scanning the last page in an ar-
ticle, you press the F (for “fin-
ish”) key in the

script’s Curses front end. This calls the
convert program from the ImageMagick
suite to transform the cached pages from
.pnm format to JPG images.

Downsizing with JPG

JPG compression can reduce the amount
of disk space needed for a scanned page
by up to 90% . Another call to convert
then bundles the JPG collection into a
multipage PDF document and saves it in
the preset output directory. The footer
line in the terminal shows the path to
the resulting document (Figure 2).

The user can either press the S key in
the script to start scanning an individual
page or just hit the green button on the
scanner.

Press Me!

While the operator is working with the
scanner and trying to line up the original
despite the crease in the middle of the
magazine, it would be inconvenient to
press a key in the terminal to tell the
script to trigger the scan.

Scanners like my Epson feature a
green button next to the scanbed that re-
turns a signal to the controlling com-
puter via the USB interface; the good
thing is, the computer can interpret the
signal in any way you like.

The scanbuttond [4] package for
Ubuntu contains a daemon that moni-
tors any scanners you have plugged in

I MIKE SCHILLI

‘ LINUXPROMAGAZINE.COM
-

Mike Schilli works as a software engineer with
Yahoo! in Sunnyvale, California. He can be con-
tacted at mschilli@perlmeister.com. Mike’s
homepage can be found at http:/perlmeister.
com.

BRI Perl: Scan to PDF

Figure 1: Newer Ubuntu distros include the Simple Scan

program.

and calls the preset /etc/scanbuttond/
buttonpressed. sh script whenever the
scanner button is pressed. The line

kill -USR1 ‘cat /tmp/pdfs/pid’

will send the Unix USRI signal to the
process whose PID is stored in the /tmp/
pdfs/pid.

The artscan script (Listing 1) [S] does
exactly this after launching with the use
of the blurt() function from the Sys-
adm::Install module to write the PID
available as $$ in Perl to the pid file and
adding a line break.

Dancing with POE

The artscan terminal front end dances to
the beat of CPAN’s POE framework,
which you will be familiar with from
previous Perl columns. The Curses::Ul::
POE module ties up the POE event loop
with the Curses library, which draws the
ASCII-based graphics elements on the
terminal and reacts to keyboard input.

For reasons of space, the implementa-
tion doesn’t follow the strict rules of the
cooperative multitasking framework,
which dictate that one task is never al-
lowed to block another.

For example, long-running Unix com-
mands like convert aren’t allowed to
block interrupts within the graphical
user interface. But, because the user
can’t really do much besides wait for the
scan or conversion to finish, the script
doesn’t worry about this and simply
freezes the UL

The _start handler defined in line 34

stores the POE session heap in the global

60 APRIL 2011

ISSUE 125

Famning osmvert Mo or s o

: P8
Funning cenvart Simpfarincess_uldo{@3FIH . pre rieplariecoasd _sids BFIN. jpp

Famnding cemverl Fimgdorlocos q?KiebDok Jpg Siepfariscosd elido DEFIN. jpg Siep/S
POF /imgrdar ncan AHED pdF ready.

Gl rgy FLaps e Locan JEFHBFSH LG . pre
Funning cenvart fimpfarisc

prm Simpsartecan [T g

Jprm Stmp oo o ERHBLT B Gy, Jpg

$HEAP variable to allow the
keyboard press handlers
defined via set_binding()
in line 71 to access the POE
session data.

To make sure the pro-
gram jumps to the article_
scan handler when it re-
ceives the Unix signal trig-
gered by the scanbuttond
daemon, line 36 calls the POE kernel’s
sig() method and assigns the POE status
"article_scan" to the signal. Line 41 de-
fines the article_scan function (defined
in line 163) as its jump address. Finally,
when an asynchronously launched scan
process completes, the kernel jumps to
the third POE state, "scan_finished".

The graphical interface builds on a
window element defined in line 49 and
consists of a bar at the top, $T0P, a list
box $LB0X and a footer line, $F00T. The
script then uses add() to drop the wid-
gets top-down into the main window.
The footer line lands at the bottom of the
window thanks to the y -1 parameter
pair; the width setting for the bar at the
top, -width -1, causes the bar to use the
full width of the terminal window.

Figure 2: The program logs in the individual steps in a list box.

/

Because of the binding in line 53, POE
calls the article_neu() function defined
in line 83 when the N key is pressed.
The function deletes any elements that
exist in the global image array, @IMAGES,
but only if the global $BUSY variable is
not set. This action occurs in various
parts of the program to prevent users
triggering actions by pressing keys while
a scan is in progress.

The script uses the $F00T-text() >
method to report on current activities in
the footer or the 1box_add() function to
add an entry to the list box in the center.
If the list box fills up the entire available
screen real estate, it chops off any sur-
plus elements at the top before adding
more elements to the bottom to create
the illusion of a scrolling file.

Tasks such as converting the raw .
PNM-formatted data from the scanner to
JPG are handled by the task function de-
fined in line 153. It uses tap from the
CPAN Sysadm::Install module to hand
the arguments passed in to it to the
shell.

The resulting PDF files are enumerated
by the script (lines 147-149), starting at
0001.pdf; the nextlvalue is discovered by

Figure 3: The scanner starts up at the push of a button and reads the cover image of a maga-
zine from 1996.

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM

searching the PDF directory for existing
PDF files and incrementing the number
of the last file.

Scanimage Workhorse
The CPAN Sane [6] module could handle
the scan, but then the script would have
to take care of all kinds of stuff, such as
releasing the SANE [7] interface on ter-
minating the program - failure to do this
would cause any future scan attempts to
hang.

Instead, the script takes the easy way
out courtesy of the scanimage program
included with the Sane package, which it
launches by calling the scan. sh shell
script.

As you can see from Listing 2, the res-
olution is set to 300 dpi, which should
be fine for normal magazines. The
--mode parameter uses the Color value to
scan in color; my Epson scanner’s de-
fault mode was monochrome. The shell
script redirects the PNM-formatted raw
data sent to stdout by scanimage into a
file using the name passed to it by the
Perl script.

Unless you pass the additional x and y
parameters to it, the Epson scanner will
only scan a small section of the available
scanning area. The values of 1060 for -x
and -y used by the shell script are re-
duced to the maximum
available scanning area
by the Sane back end, i Fruwaes
which just happens to be —a i
exactly the size of a com-
puter magazine in the
case of the Epson. You
will need to experiment
with these parameters for
other scanner models or
printed material.

Volatile Raw .
Data '
To collect the raw data &
from the scanner, the
script uses the CPAN
File::Temp module and
its exported tempfile
function in line 168 of

L]

Perl: Scan to PDF

cally disappear shortly before artscan
terminates, thanks to the UNLINK option.
The POE::Wheel::Run module calls
the external scanner script scan. sh,
which resides in the same directory. The

Lo
Alle M an
di# Fumipen!

"' s

Listing 1 to create tempo-] -
rary files that automagi-

Figure 4: The finished article in PDF format after scanning.

Perl: Scan to PDF

Perl script launches a parallel process,
calls the shell command with the tempo-
rary output file, and - thanks to the
CloseEvent parameter - changes to the
POE scan_finished POE state after com-

pleting the scan. All of this happens
asynchronously, so that neu() can return
immediately in line 179.

To keep the wheel turning after exiting
the article_scan function, line 187 stores

the wheel data on the session heap. Line
192 then quickly writes “Scanning ...” in
the footer before the article_scan func-
tion terminates and control returns to
the POE kernel, which then processes

LISTING 1: artscan (continued on p 63)

001 #!/usr/local/bin/perl -w 050 qw(top Label 099

002 #HH#HH#HHHHHHHHHHHHHHHH T 051 -y 0 -width -1 100 my @jpg_files = ();

003 # artscan - Scan articles in 052 -paddingspaces 1 101

oo4 # batches 053 -fg white -bg blue 102 for my $image (@IMAGES) {
005 # Mike Schilli, 2010 o054), -text => "artscan v1.0" 103 my $jpg_file = "$PDF_DIR/"
006 # (m@perlmeister.com) 055); 104 . basename($image);

007 #########HHHHHHHHH R 056 105 $jpg_file =~

008 use strict; 057 my $LBOX = $WIN->add(106 s/\.pnm$/.jpg/;

009 use local::lib; 058 qw(1lb Listbox 107 push @jpg_files, $jpg_file;
010 use POE; 059 -padtop 1 108 task("convert", $image,
011 use POE::Wheel: :Run; 060 -padbottom 1 -border 1), 109 $jpg_file);

012 use Curses::UI::POE; 061); 110 }

013 use Sysadm::Install qw(:all); 062 111

014 use File::Temp qw(tempfile); 063 my $FOOT = $WIN->add(112 my $pdf_file =

015 use File::Basename; 064 qw(bottom Label 113 next_pdf_file();

016 065 -y -1 -paddingspaces 1 114

017 my $PDF_DIR = "/tmp/artscan"; 066 -fg white -bg blue) 115 $FOOT->text(

018 mkd $PDF_DIR 067); 116 "Writing PDF ...");

019 unless -d $PDF_DIR; 068 117 $FOOT->draw();

020 069 footer_update(); 118

021 my $pidfile = "$PDF_DIR/pid"; 070 119 task("convert", @jpg_files,
022 blurt "$$\n", $pidfile; 071 $CUI->set_binding(120 ¢$pdf_file);

023 072 sub { exit 0; }, "q@"); 121 wunlink @jpg_files;

024 my @LBOX_LINES = (); 073 $CUI->set_binding(122

025 my $BUSY = 0; 074 \&article_new, "n"); 123 $LAST PDF = $pdf_file;

026 my $LAST_ PDF; 075 $CUI->set_binding(124 @IMAGES = ()

027 my @IMAGES = (); 076 \&article_scan, "s"); 125

028 my $HEAP; 077 $CUI->set_binding(126 1box_add(

029 078 \&article_finish, "f£"); 127 "PDF $LAST_PDF ready.");
030 my $CUI = 079 128 footer_update();

031 Curses: :UI: :POE->new(080 $CUI->mainloop; 129 $BUSY = 0;

032 -color_support => 1, 081 130 }

033 inline_states => { 082 ####H###H I 131

034 _start => sub { 083 sub article_new { 132 fapafadiadagedadegodoiedododey
035 $HEAP = $_[HEAP]; 084 #H#H#H#H#HHHHHHAHHHHHHHHH AR 133 sub next_pdf_file {

036 $_[KERNEL]->sig("USR1", 085 return if $BUSY; 134 R
037 "article_scan"); 086 @IMAGES = (); 135 my $idx = 0;

038 }, 087 footer_update(); 136

039 scan_finished => 088 } 137 my @pdf_files =

040 \&scan_finished, 089 138 sort <$PDF_DIR/*.pdf>;
o41 article_scan => 090 ######H#HHHH A 139

o42 \&article_scan, 091 sub article_finish { 140 if (scalar @pdf files > 0) {
ou3 } 092 HH##HHHHHHHHH TR 141 ($idx) =

ous) 093 return if $BUSY; 142 ($pdf_files[-1] =~

ous 094 $BUSY = 1; 143 /(\a+) /)3

046 my $WIN = $CUI->add("win_id", 095 148}

047 "Window"); 096 $FOOT->text(188

ou4s 097 "Converting ..."); 146 return "$PDF_DIR/"

049 my $TOP = $WIN->add(098 $FOOT->draw(); 1y sprint£("%04d",

Perl: Scan to PDF [HRIR

subsequent events. Once the scanner has
finally completed the scan, the wheel ac-
tivates the scan_finished function in line
198 to remove the wheel data from the
heap and to append the name of the
temporary file with the raw data from

the scanner to the global array, @RIMAGES
(lines 203-204).

curses-ui-perl, and 1ibsysadm-install-
perl install the underpinnings that you
need to get the script running. You need
to make the tiny shell script, scan.sh
(Listing 2), executable and store it in the
same directory as the main artscan

nstallation
Ubuntu Packages imagemagick, 11b-
file-temp-perl, libpoe-perl, 1ib-

B LISTING 1: artscan (continyed from p

62)

script.
If your distribution doesn’t offer a
Curses::UI::POE package, you will need

148 $idx + 1) 197 At
e vopagn 198 sub scan_finished { to install this manually in a‘ CPAN shell.
=9 0 L0 b If you use local::lib, the script will also

need to include this, as shown in line 9
151 200 my ($heap) = K R

of artscan; if not, you can delete this
152 #HHHHHHHE 201 @_[HEAP, KERNEL]; ;

ine.
153 sub task { 202 . .

If you prefer to experiment with the

15U 203 push @IMAGES, ,

scanner’s Sane back end, I would recom-
155 my ($command, @a: 204 $heap-> {scanner}->{file};

156
157
158
159

205
1box_add("Runnin 206
. " @args"); 207

tap($command, @a: 208

delete $heap->{scanner};
footer_update();

$BUSY = 0,

}

mend the CPAN Sane module, which is
available as 1ibsane-per1 on Ubuntu.

Improvements

If you have a scanner with an automatic

160 J 28 document feeder, you can make the

S oMt scanning process even more efficient.
162 HHHHHERHHRHHEHE AR 211 sub footer_update { Assuming you are willing to chop up the
163 sub article_scan { 212 R magazine with a strong pair of scissors
164 AR 213 my $text = or a guillotine, the scanner could auto-
165 return if $BUSY; 214 "[n]ew [s]can [f]inish [q]" matically feed the pages one by one. A
166 $BUSY = 1; 215 . Muit (" second scanning run would take care of
167 216 . scalar @IMAGES the backs of the pages, and the script
168 my ($fh, $tempfile) = 217 . " pending)"; could reassemble the whole thing in the
169 tempfile(218 right order. Preserve those back issues
170 DIR => $PDF_DIR, 219 if (defined $LAST PDF) { for the next millennium! mum

171 SUFFIX => ".pnm", 220 $text .= " [$LAST_PDF]";

172 UNLINK > 1 221} B LISTING 2: scan.sh

173 E 222 $FOOT->text($text); 1 #!/bin/bash

174 223 $FOOT->draw(); 2 scanimage -x 1000 -y 1000 \

175 1box_add(224 } 3 --resolution=300 \

176 "Scanning $tempfile"); 225 In —-mode Color >$1

177 226 #H#HHHHHHH RS

178 my $wheel = 227 sub lbox_add {

179 POE: :Wheel: : Run->new(228 ####HH R l INFO

180 Program => "./scan.sh", 229 my ($line) = @_; [1] “Perl: Archiving PDFs” by Michael
181 ProgramArgs => [$tempfile], 230 Schilli, Linux Magazine, June 2005,
182 StderrEvent => 'ignore', 231 if (Judith: l.1ttp.'//WWW.Iinux—m.a'gazine.com/
183 CloseEvent => 232 scalar @LBOX_LINES issue/55/Perl_Archiving_PDFs.pdf
184 "scan_finished", 233 $LBOX->height() - I_Inessed [2] XSane: http://www.xsane.org/

185)3 234 { with your [3] Simple Scan:

186 235 shift @LBOX_LINES: Info box. https://launchpad.net/simple-scan
187 $HEAP->{scanner} = { 236 } -rls [4] scanbuttond — A scanner button dae-
188 wheel => $wheel, 237 push @LBOX_LINES, ¢ mon for Linux:

189 file => $tempfile 238 http://scanbuttond.sourceforge.net
190 }; 239 $LBOX->{-values} = [5] Listings for this article:

191 240 [@LBOX_LINES] ; http://www.linuxpromagazine.com/
192 $FOOT->text(241 $LBOX->{-labels} = Resources/Article-Code

193 "Scanning ... "); 2u2 {map { $_ => $_} [6] Perl Sane module: http:/search.cpan.
194 $FOOT->draw(); 243 @LBOX_LINES }; org/~ratcliffe/Sane-0.03/lib/Sane.pm
195 } 244 $LBOX->draw(); [7]1 SANE:

196 245 } http.//www.sane-project.org/html

LINUX-MAGAZINE.COM |

LINUXPROMAGAZINE.COM

ISSUE 125 APRIL 2011

63

