
L
ong-standing readers will be
aware that this Perl column has
been around for almost 10 years.
What they probably don’t know is

that the collected paper issues of Linux
Pro magazines in my apartment take up
feet of valuable shelf space. I have con-
sidered renting a unit in a storage facil-
ity, but the rents in San Francisco defi-
nitely put me off that idea.

Before I recycle the mags, though, I
would at least, for reasons of nostalgia,

like to convert the articles into PDF for-
mat and store them in a database using
the artscan script [1].

Fighting Fatigue
Scanning programs such as xsane [2] and
simple‑scan [3], a recent addition to
Ubuntu (Figure 1), will handle individ-
ual scans without much ado. But, faced
with the task of scanning several pages
from a magazine and then composing
the JPG images in a multipage PDF doc-
ument, even the most ambitious scanner
operators will soon feel the strain if they
don’t find a way to automate the pro-
cess.

A newly created Perl script by the
name of artscan guides you through

the scanning process thanks to a ter-
minal-based menubar, and it dis-
plays the step currently in progress
in a list box in real time (Figure 2).
As an additional benefit, you only
need to press the green button on the

scanner once you’ve set up the cur-
rent page containing the article on the
scanner bed (Figure 3).

To discard a series of individual im-
ages that you have already scanned,
press the N (for “new”) key in the termi-
nal UI, which tells the script to ditch the
scanner images that it is caching.

After scanning the last page in an ar-
ticle, you press the F (for “fin-

ish”) key in the

script’s Curses front end. This calls the
convert program from the ImageMagick
suite to transform the cached pages from
.pnm format to JPG images.

Downsizing with JPG
JPG compression can reduce the amount
of disk space needed for a scanned page
by up to 90%. Another call to convert
then bundles the JPG collection into a
multipage PDF document and saves it in
the preset output directory. The footer
line in the terminal shows the path to
the resulting document (Figure 2).

The user can either press the S key in
the script to start scanning an individual
page or just hit the green button on the
scanner.

Press Me!
While the operator is working with the
scanner and trying to line up the original
despite the crease in the middle of the
magazine, it would be inconvenient to
press a key in the terminal to tell the
script to trigger the scan.

Scanners like my Epson feature a
green button next to the scanbed that re-
turns a signal to the controlling com-
puter via the USB interface; the good
thing is, the computer can interpret the
signal in any way you like.

The scanbuttond [4] package for
Ubuntu contains a daemon that moni-
tors any scanners you have plugged in

Features
Perl: Scan to PDF

linux-magazine.com | Linuxpromagazine.com	I ssue 125	A pril 2011 59

Mike Schilli works as a software engineer with
Yahoo! in Sunnyvale, California. He can be con-
tacted at mschilli@perlmeister.com. Mike’s
homepage can be found at http://​perlmeister.​
com.

 Mike Schilli

 Automate your scans with these Perl scripts

At the Press of
a Button
A Perl script creates PDFs from magazine articles by automating a process triggered by the

simple press of a button. By Michael Schilli

and calls the preset /etc/scanbuttond/
buttonpressed.sh script whenever the
scanner button is pressed. The line

kill ‑USR1 `cat /tmp/pdfs/pid`

will send the Unix USR1 signal to the
process whose PID is stored in the /tmp/
pdfs/pid.

The artscan script (Listing 1) [5] does
exactly this after launching with the use
of the blurt() function from the Sys-
adm::​Install module to write the PID
available as $$ in Perl to the pid file and
adding a line break.

Dancing with POE
The artscan terminal front end dances to
the beat of CPAN’s POE framework,
which you will be familiar with from
previous Perl columns. The Curses::​UI::​
POE module ties up the POE event loop
with the Curses library, which draws the
ASCII-based graphics elements on the
terminal and reacts to keyboard input.

For reasons of space, the implementa-
tion doesn’t follow the strict rules of the
cooperative multitasking framework,
which dictate that one task is never al-
lowed to block another.

For example, long-running Unix com-
mands like convert aren’t allowed to
block interrupts within the graphical
user interface. But, because the user
can’t really do much besides wait for the
scan or conversion to finish, the script
doesn’t worry about this and simply
freezes the UI.

The _start handler defined in line 34
stores the POE session heap in the global

$HEAP variable to allow the
keyboard press handlers
defined via set_binding()
in line 71 to access the POE
session data.

To make sure the pro-
gram jumps to the article_
scan handler when it re-
ceives the Unix signal trig-
gered by the scanbuttond

daemon, line 36 calls the POE kernel’s
sig() method and assigns the POE status
"article_scan" to the signal. Line 41 de-
fines the article_scan function (defined
in line 163) as its jump address. Finally,
when an asynchronously launched scan
process completes, the kernel jumps to
the third POE state, "scan_finished".

The graphical interface builds on a
window element defined in line 49 and
consists of a bar at the top, $TOP, a list
box $LBOX and a footer line, $FOOT. The
script then uses add() to drop the wid-
gets top-down into the main window.
The footer line lands at the bottom of the
window thanks to the y ‑1 parameter
pair; the width setting for the bar at the
top, ‑width ‑1, causes the bar to use the
full width of the terminal window.

Because of the binding in line 53, POE
calls the article_new() function defined
in line 83 when the N key is pressed.
The function deletes any elements that
exist in the global image array, @IMAGES,
but only if the global $BUSY variable is
not set. This action occurs in various
parts of the program to prevent users
triggering actions by pressing keys while
a scan is in progress.

The script uses the $FOOT‑text()>
method to report on current activities in
the footer or the lbox_add() function to
add an entry to the list box in the center.
If the list box fills up the entire available
screen real estate, it chops off any sur-
plus elements at the top before adding
more elements to the bottom to create
the illusion of a scrolling file.

Tasks such as converting the raw .
PNM-formatted data from the scanner to
JPG are handled by the task function de-
fined in line 153. It uses tap from the
CPAN Sysadm::Install module to hand
the arguments passed in to it to the
shell.

The resulting PDF files are enumerated
by the script (lines 147-149), starting at
0001.pdf; the next value is discovered by

Figure 1: Newer Ubuntu distros include the Simple Scan

program.

Figure 3: The scanner starts up at the push of a button and reads the cover image of a maga-

zine from 1996.

Figure 2: The program logs in the individual steps in a list box.

Mike: I added
these line nos.
to get the para-
graph to wrap

an extra line (the
article was a

little short). OK
as set?? -rls

Mike:
line

73?? -rls

Mike:

$FOOT–>
text()?? -rls

Features
Perl: Scan to PDF

April 2011	I ssue 125	 linux-magazine.com | Linuxpromagazine.com	60

searching the PDF directory for existing
PDF files and incrementing the number
of the last file.

Scanimage Workhorse
The CPAN Sane [6] module could handle
the scan, but then the script would have
to take care of all kinds of stuff, such as
releasing the SANE [7] interface on ter-
minating the program – failure to do this
would cause any future scan attempts to
hang.

Instead, the script takes the easy way
out courtesy of the scanimage program
included with the Sane package, which it
launches by calling the scan.sh shell
script.

As you can see from Listing 2, the res-
olution is set to 300 dpi, which should
be fine for normal magazines. The
‑‑mode parameter uses the Color value to
scan in color; my Epson scanner’s de-
fault mode was monochrome. The shell
script redirects the PNM-formatted raw
data sent to stdout by scanimage into a
file using the name passed to it by the
Perl script.

Unless you pass the additional x and y
parameters to it, the Epson scanner will
only scan a small section of the available
scanning area. The values of 1000 for ‑x
and ‑y used by the shell script are re-
duced to the maximum
available scanning area
by the Sane back end,
which just happens to be
exactly the size of a com-
puter magazine in the
case of the Epson. You
will need to experiment
with these parameters for
other scanner models or
printed material.

Volatile Raw
Data
To collect the raw data
from the scanner, the
script uses the CPAN
File::Temp module and
its exported tempfile
function in line 168 of
Listing 1 to create tempo-
rary files that automagi-

cally disappear shortly before artscan
terminates, thanks to the UNLINK option.

The POE::Wheel::Run module calls
the external scanner script scan.sh,
which resides in the same directory. The

Figure 4: The finished article in PDF format after scanning.

Features
Perl: Scan to PDF

linux-magazine.com | Linuxpromagazine.com	I ssue 125	A pril 2011 61

Perl script launches a parallel process,
calls the shell command with the tempo-
rary output file, and – thanks to the
CloseEvent parameter – changes to the
POE scan_finished POE state after com-

pleting the scan. All of this happens
asynchronously, so that new() can return
immediately in line 179.

To keep the wheel turning after exiting
the article_scan function, line 187 stores

the wheel data on the session heap. Line
192 then quickly writes “Scanning …” in
the footer before the article_scan func-
tion terminates and control returns to
the POE kernel, which then processes

001 �#!/usr/local/bin/perl ‑w

002 �#############################

003 �# artscan ‑ Scan articles in

004 �# batches

005 �# Mike Schilli, 2010

006 �# (m@perlmeister.com)

007 �#############################

008 �use strict;

009 �use local::lib;

010 �use POE;

011 �use POE::Wheel::Run;

012 �use Curses::UI::POE;

013 �use Sysadm::Install qw(:all);

014 �use File::Temp qw(tempfile);

015 �use File::Basename;

016

�017 �my $PDF_DIR = "/tmp/artscan";

018 �mkd $PDF_DIR

019 � unless ‑d $PDF_DIR;

020

�021 �my $pidfile = "$PDF_DIR/pid";

022 �blurt "$$\n", $pidfile;

023

�024 �my @LBOX_LINES = ();

025 �my $BUSY = 0;

026 �my $LAST_PDF;

027 �my @IMAGES = ();

028 �my $HEAP;

029

�030 �my $CUI =

031 � Curses::UI::POE‑>new(

032 � ‑color_support => 1,

033 � inline_states => {

034 � _start => sub {

035 � $HEAP = $_[HEAP];

036 � $_[KERNEL]‑>sig("USR1",

037 � "article_scan");

038 � },

039 � scan_finished =>

040 � \&scan_finished,

041 � article_scan =>

042 � \&article_scan,

043 � }

044 �);

045

�046 �my $WIN = $CUI‑>add("win_id",

047 � "Window");

048

�049 �my $TOP = $WIN‑>add(

050 � qw(top Label

051 � ‑y 0 ‑width ‑1

052 � ‑paddingspaces 1

053 � ‑fg white ‑bg blue

054 �), ‑text => "artscan v1.0"

055 �);

056

�057 �my $LBOX = $WIN‑>add(

058 � qw(lb Listbox

059 � ‑padtop 1

060 � ‑padbottom 1 ‑border 1),

061 �);

062

�063 �my $FOOT = $WIN‑>add(

064 � qw(bottom Label

065 � ‑y ‑1 ‑paddingspaces 1

066 � ‑fg white ‑bg blue)

067 �);

068

�069 �footer_update();

070

�071 �$CUI‑>set_binding(

072 � sub { exit 0; }, "q");

073 �$CUI‑>set_binding(

074 � \&article_new, "n");

075 �$CUI‑>set_binding(

076 � \&article_scan, "s");

077 �$CUI‑>set_binding(

078 � \&article_finish, "f");

079

�080 �$CUI‑>mainloop;

081

�082 �#############################

083 �sub article_new {

084 �#############################

085 � return if $BUSY;

086 � @IMAGES = ();

087 � footer_update();

088 �}

089

�090 �#############################

091 �sub article_finish {

092 �#############################

093 � return if $BUSY;

094 � $BUSY = 1;

095

�096 � $FOOT‑>text(

097 � "Converting ...");

098 � $FOOT‑>draw();

099

�100 � my @jpg_files = ();

101

�102 � for my $image (@IMAGES) {

103 � my $jpg_file = "$PDF_DIR/"

104 � . basename($image);

105 � $jpg_file =~

106 � s/\.pnm$/.jpg/;

107 � push @jpg_files, $jpg_file;

108 � task("convert", $image,

109 � $jpg_file);

110 � }

111

�112 � my $pdf_file =

113 � next_pdf_file();

114

�115 � $FOOT‑>text(

116 � "Writing PDF ...");

117 � $FOOT‑>draw();

118

�119 � task("convert", @jpg_files,

120 � $pdf_file);

121 � unlink @jpg_files;

122

�123 � $LAST_PDF = $pdf_file;

124 � @IMAGES = ();

125

�126 � lbox_add(

127 � "PDF $LAST_PDF ready.");

128 � footer_update();

129 � $BUSY = 0;

130 �}

131

�132 �#############################

133 �sub next_pdf_file {

134 �#############################

135 � my $idx = 0;

136

�137 � my @pdf_files =

138 � sort <$PDF_DIR/*.pdf>;

139

�140 � if (scalar @pdf_files > 0) {

141 � ($idx) =

142 � ($pdf_files[‑1] =~

143 � /(\d+)/);

144 � }

145

�146 � return "$PDF_DIR/"

147 � . sprintf("%04d",

 Listing 1: artscan (continued on p 63)Mike:
2 POEs
OK
here??
-rls

Features
Perl: Scan to PDF

April 2011	I ssue 125	 linux-magazine.com | Linuxpromagazine.com	62

[1]	� “Perl: Archiving PDFs” by Michael
Schilli, Linux Magazine, June 2005,
http://​www.​linux‑magazine.​com/​
issue/​55/​Perl_Archiving_PDFs.​pdf

[2]	� XSane: http://www.xsane.org/

[3]	� Simple Scan:
https://launchpad.net/simple-scan

[4]	� scanbuttond – A scanner button dae-
mon for Linux:
http://​scanbuttond.​sourceforge.​net

[5]	� Listings for this article:
http://www.linuxpromagazine.com/
Resources/Article-Code

[6]	� Perl Sane module: http://​search.​cpan.​
org/​~ratcliffe/​Sane‑0.​03/​lib/​Sane.​pm

[7]	� SANE:
http://​www.​sane‑project.​org/​html

 Info

148 � $idx + 1)

149 � . ".pdf";

150 �}

151

�152 �#############################

153 �sub task {

154 �#############################

155 � my ($command, @args) = @_;

156

�157 � lbox_add("Running $command"

158 � . " @args");

159 � tap($command, @args);

160 �}

161

�162 �#############################

163 �sub article_scan {

164 �#############################

165 � return if $BUSY;

166 � $BUSY = 1;

167

�168 � my ($fh, $tempfile) =

169 � tempfile(

170 � DIR => $PDF_DIR,

171 � SUFFIX => ".pnm",

172 � UNLINK => 1

173 �);

174

�175 � lbox_add(

176 � "Scanning $tempfile");

177

�178 � my $wheel =

179 � POE::Wheel::Run‑>new(

180 � Program => "./scan.sh",

181 � ProgramArgs => [$tempfile],

182 � StderrEvent => 'ignore',

183 � CloseEvent =>

184 � "scan_finished",

185 �);

186

�187 � $HEAP‑>{scanner} = {

188 � wheel => $wheel,

189 � file => $tempfile

190 � };

191

�192 � $FOOT‑>text(

193 � "Scanning ... ");

194 � $FOOT‑>draw();

195 �}

196

�197 �#############################

198 �sub scan_finished {

199 �#############################

200 � my ($heap) =

201 � @_[HEAP, KERNEL];

202

�203 � push @IMAGES,

204 � $heap‑>{scanner}‑>{file};

205 � delete $heap‑>{scanner};

206 � footer_update();

207 � $BUSY = 0;

208 �}

209

�210 �#############################

211 �sub footer_update {

212 �#############################

213 � my $text =

214 �"[n]ew [s]can [f]inish [q]"

215 � . "uit ("

216 � . scalar @IMAGES

217 � . " pending)";

218

�219 � if (defined $LAST_PDF) {

220 � $text .= " [$LAST_PDF]";

221 � }

222 � $FOOT‑>text($text);

223 � $FOOT‑>draw();

224 �}

225

�226 �#############################

227 �sub lbox_add {

228 �#############################

229 � my ($line) = @_;

230

�231 � if (

232 � scalar @LBOX_LINES >=

233 � $LBOX‑>height() ‑ 4)

234 � {

235 � shift @LBOX_LINES;

236 � }

237 � push @LBOX_LINES, $line;

238

�239 � $LBOX‑>{‑values} =

240 � [@LBOX_LINES];

241 � $LBOX‑>{‑labels} =

242 � { map { $_ => $_ }

243 � @LBOX_LINES };

244 � $LBOX‑>draw();

245 �}

 Listing 1: artscan (continued from p 62)

1 �#!/bin/bash

2 �scanimage ‑x 1000 ‑y 1000 \

3 � ‑‑resolution=300 \

4 � ‑‑mode Color >$1

 Listing 2: scan.sh

subsequent events. Once the scanner has
finally completed the scan, the wheel ac-
tivates the scan_finished function in line
198 to remove the wheel data from the
heap and to append the name of the
temporary file with the raw data from

the scanner to the global array, @IMAGES
(lines 203-204).

Installation
Ubuntu Packages imagemagick, lib‑
file‑temp‑perl, libpoe‑perl, lib‑

curses‑ui‑perl, and libsysadm‑install‑​
perl install the underpinnings that you
need to get the script running. You need
to make the tiny shell script, scan.sh
(Listing 2), executable and store it in the
same directory as the main artscan
script.

If your distribution doesn’t offer a
Curses::UI::POE package, you will need
to install this manually in a CPAN shell.
If you use local::lib, the script will also
need to include this, as shown in line 9
of artscan; if not, you can delete this
line.

If you prefer to experiment with the
scanner’s Sane back end, I would recom-
mend the CPAN Sane module, which is
available as libsane‑perl on Ubuntu.

Improvements
If you have a scanner with an automatic
document feeder, you can make the
scanning process even more efficient.
Assuming you are willing to chop up the
magazine with a strong pair of scissors
or a guillotine, the scanner could auto-
matically feed the pages one by one. A
second scanning run would take care of
the backs of the pages, and the script
could reassemble the whole thing in the
right order. Preserve those back issues
for the next millennium! nnn

Mike: I added
these line nos.
to get the para-
graph to wrap

(same reason as
before). OK as

set?? -rls

Judith:
I messed
with your
Info box.

-rls

Features
Perl: Scan to PDF

linux-magazine.com | Linuxpromagazine.com	I ssue 125	A pril 2011 63

