
I
am loath to admit that my Ubuntu
laptop has been gathering dust
since the people at work handed me
a MacBook about six months back.

Can I just say two things in my own de-
fense? A sleeping MacBook wakes up
correctly in 99 of 100 cases and is ready
for use within five seconds – including
wireless. And, to create a backup, you
just plug in a preconfigured USB backup
disk, sit back, and watch the backup
take place without moving a muscle
(Figure 1).

You could say this is just a gimmick,
but features like these liven up the daily
grind, and if you don’t have them, you
can get all kinds of nasty withdrawal
symptoms. Fortunately, state-of-the-art
Linux desktops can trigger actions like
these, too.

D-Bus, as used by Gnome, and now
also by KDE, provides a practical com-
munications channel between various
applications, without the applications
needing to know about each other. For
example, when the Hardware Abstrac-
tion Layer (HAL) notices that the user
has plugged in a USB stick, it sends a
message on the D-Bus. Other applica-
tions, like the Gnome Desktop, pick up
the message from the bus and then
mount the stick in the /media directory
(e.g., with Ubuntu) and open a “File
Browser” window on the desktop.

Riding the System Bus
Even a scripting language, such as Perl,
can ride the D-Bus thanks to the CPAN

Net::DBus module. In Listing 1, line 12
selects the system bus, which collects
and propagates system global messages
independently of the active desktop ses-
sion. Alternatively, D-Bus also offers the
session bus that transports the data for
the current user session. The get_ser‑
vice() method queries the bus object for
the "org.freedesktop.Hal" service, which
stores the HAL data in the freedesktop.
org hierarchy, the D-Bus mother ship.
The back-to-front notation helps orga-
nize the hierarchy and is well-known
from the world of Java.

The get_object() in line 17 then uses
this service to try to retrieve a HAL man-
ager class object. In high-level lan-
guages, D-Bus often provides its services
in the form of objects whose methods
send or receive the bus data. The HAL
Manager has a GetAllDevices() method,
which returns a descriptive string for
each connected device that HAL can
identify. The for loop at
the end prints them
all out, as shown
in Figure 2.

Listener
on the
Wall
While Listing
1 contacts
the HAL
Manager’s

Remote object to enumerate the devices
registered thus far, you need a client
who subscribes and keeps listening to
the news on the bus to automagically
launch a backup when a device is
plugged in.

Because the documentation for some
parts of sent D-Bus messages can be
woefully lacking, it is often simpler to
use a tool like dbus‑monitor, which is in-
cluded with the dbus package. When
launched at the command line, this tool
commandeers all D-Bus messages and
outputs them when they arrive. Among
other things, Figure 3 shows that a
MountAdded event is passed to dbus‑moni‑
tor when a user plugs in a USB stick. Ac-
cording to dbus‑monitor, the service re-
sponsible for this message is org.gtk.
Private.GduVolumeMonitor, which uses
the org.gtk.Private.RemoteVolumeMonitor
interface to serve up the /org/gtk/Pri‑
vate/RemoteVolumeMonitor object.

This event on the session bus no
doubt originates with an appli-

cation from the Gnome world
that mounts the USB stick

in /media and informs the
listeners on the D-Bus of
the event.

Backup
Commando

To capture these events
without drowning in a
flood of irrelevant bus gos-
sip, the backup daemon

script, dbus‑mount‑​
watcher, registers

with the D-Bus
in Listing 2

Mike Schilli works as a software
engineer with Yahoo! in Sunny-
vale, California. He can be con-
tacted at mschilli@perlmeis‑
ter.com. Mike’s homepage
can be found at
http://​perlmeister.​com.

 Mike Schilli

A Perl daemon starts an automatic backup with a progress indicator on the desktop when

D-Bus reports that a USB stick has been plugged in. By Michael Schilli

 Using D-Bus for automatic backups

Get on D-Bus

Features
Perl: D-Bus

May 2011	 Issue 126	 linux-magazine.com | Linuxpromagazine.com	56

and then subscribes to only MountAdded
messages.

To see whether the user plugged in the
known backup stick and not some other
USB device, the script looks for the pre-
set UUID A840-E2B3, which is the stick
identification previously revealed by the
D-Bus monitor. As soon as the daemon
script recognizes the stick, it launches
the gtk2‑backup backup application in
Listing 3 with a Gtk front end to initiate

the backup proce-
dure and display
its current status
on the desktop
with a progress in-
dicator.

Screenless Daemon
Because the daemon script runs in the
background, thanks to the CPAN App::​
Daemon module, it is unaware of termi-
nals or X server displays. To tell the
graphical backup where to draw its GUI,
the command in line 54 therefore defines
the DISPLAY variable values as :0.0 – that
is, the first display on the active comput-
er’s X server.

The daemon script is launched by typ-
ing dbus‑mount‑watcher start, after
which it disappears into the background
thanks to the daemonize() method ex-
ported by App::Daemon. The user sees
the command-line prompt return shortly
after the launch. The daemon logs its ac-
tivity in /tmp/dbus‑mount‑watcher.log
(Figure 4).

The dbus‑mountwatcher stop command
terminates the daemon. For debugging
purposes, the ‑X switch gives you the op-
tion of launching the daemon in the
foreground (but log data are always writ-
ten to the logfile), and status lets you
query the daemon’s status if
you’re in doubt about whether
it’s up or down.

The connect_to_signal()
method in line 37 of Listing 2
assigns the 'MountAdded' event
on the session bus to the mount_
added() callback in line 43.
When an event is captured, the
Net::DBus framework makes
sure all the parameters are
listed in the dbus‑monitor out-
put in Figure 3 are passed to
the callback. The third parame-
ter is thus a reference to an
array, and the fifth element in

the array is the USB stick mount point
below the /media directory (Figure 5).

The system() call in line 58 of Listing 2
calls the graphical backup script
gtk2‑backup in Listing 3 and hands over
the mount point as file:///media/XXX.
The script’s GUI pops up and immedi-
ately draws a red progress indicator on
the screen after launching the backup
process (Figure 6).

To prevent the daemon from stopping
after registering with the D-Bus, and to
instead keep it running indefinitely
while time handling D-Bus events, line
63 defines a “Reactor.” This object has a
run() method that binds the daemon to
the D-Bus for all time.

Building Boxes
Listing 3 accepts the mount point for the
identified USB stick, removes its file://
precursor in line 25, and then uses the
command in line 34 to define the simple
backup method: the tar command col-
lects all the files below the $src_dir di-
rectory (line 15) and writes the resulting
tarball to the USB stick. To prevent over-
writing, the script creates a file name for
the current data in a YYYYMMDD.tgz for-
mat. If you plug in the stick more than
once a day, you need to modify this to
add hours and minutes.

01 �#!/usr/local/bin/perl ‑w

02 �#############################

03 �# hal‑status ‑‑ Get HAL

04 �# status via D‑Bus

05 �# Mike Schilli, 2011

06 �# (m@perlmeister.com)

07 �#############################

08 �use strict;

09 �use Net::DBus;

10

�11 �my $bus =

12 � Net::DBus‑>system();

13 �my $hal = $bus‑>get_service(

14 � "org.freedesktop.Hal");

15

�16 �my $manager =

17 � $hal‑>get_object(

18 �"/org/freedesktop/Hal/Manager",

19 �"org.freedesktop.Hal.Manager"

20 �);

21

�22 �my $devices =

23 � $manager‑>GetAllDevices();

24

�25 �for my $device (@$devices) {

26 � print "$device\n";

27 �}

 Listing 1: hal-status

Figure 1: The MacBook immediately launches the “Time Machine”

backup utility when the user plugs in the USB backup drive.

Figure 2: Net::DBus connects with the system D-Bus and outputs all

hardware components detected by the HAL Manager.

Figure 3: News of a recently plugged in and mounted

USB stick is propagated on the D-Bus.

Features
Perl: D-Bus

linux-magazine.com | Linuxpromagazine.com	 Issue 126	 May 2011 57

The GUI layout comprises an upper
section with the progress indicator and a
lower section with a button that reads
Cancel during the backup. This button
toggles to a success message after the
backup completes. Because widgets, like
progress indicators, can’t be displayed
directly in a Gtk2::Window class win-
dow, you need a Gtk2::VBox to contain
them. The pack_start() method inserts
the progress bar and the button into the
container.

If the backup is
too slow for your
liking, you can in-
terrupt the process
by pressing the
Cancel button. In
this case, the
script sends a Sig-
term signal (nu-
merical signal

value 2) to the tar process; the process
quits, which triggers an error in close()
in line 105 and thus dismantles the GUI
before shutting down the backup script.

Progress with a Trick
To make sure the progress indicator
gives a fair representation of the backup
status, the CPAN File::Finder module
first collects all the files (type "f")
below the $src_dir directory and
all the subdirectories in line 31,
and counts them using the scalar
operator on the resulting array.

With tar running in verbose
mode, the while loop in lines 88-
103 picks up each new line of out-
put and thus has a very good idea
how many files tar has backed up.
Line 96 reports the ratio of finished
files to the total number of files to
the progress indicator, with line 92
adding the Backup Progress (XX/​
YY) text. The Gtk2 construct with
the main_iteration method in line

99 refreshes the front end each time the
progress indicator moves; otherwise,
buffering would prevent any progress
from being displayed. When the tar
command completes, line 108 outputs a
success message in the button below the
bar; clicking the button (or pressing
Enter) terminates the program.

To make sure the data written by tar
ends up on the USB stick rather than
being cached somewhere in the operat-
ing system layers, you should umount the
stick, either at the command line or in
the file manager, before you unplug it.

The GUI starts to run on entering the
main event loop (Gtk2‑>main) in line 77,
where it then waits for user input. Be-
cause you want the backup program to
run automatically without waiting for

01 �#!/usr/local/bin/perl ‑w

02 �#############################

03 �# mount‑watcher

04 �# Mike Schilli, 2011

05 �# (m@perlmeister.com)

06 �#############################

07 �use strict;

08 �use Net::DBus;

09 �use Net::DBus::Reactor;

10 �use App::Daemon;

11 �use FindBin qw($Bin);

12 �use Log::Log4perl qw(:easy);

13

�14 �use App::Daemon

15 � qw(daemonize);

16 �daemonize();

17

�18 �INFO "Starting up";

19

�20 �my $BACKUP_STICK =

21 � "file:///media/A840‑E2B3";

22 �my $BACKUP_PROCESS =

23 � "$Bin/gtk2‑backup";

24

�25 �my $notifications =

26 � Net::DBus‑>session

27 � ‑>get_service(

28 �"org.gtk.Private.GduVolumeMonitor"

29 �)‑>get_object(

30 �"/org/gtk/Private/
RemoteVolumeMonitor",

31 �"org.gtk.Private.
RemoteVolumeMonitor",

32 �);

33

�34 �INFO "Subscribing to signal";

35

�36 �$notifications

37 � ‑>connect_to_signal(

38 � 'MountAdded',

39 � \&mount_added

40 �);

41

�42 �#############################

43 �sub mount_added {

44 �#############################

45 � my ($service, $addr, $data)

46 � = @_;

47

�48 � INFO "Found mount point ",

49 � "$data‑>[4] ";

50

�51 � if ($data‑>[4] eq

52 � $BACKUP_STICK)

53 � {

54 � my $cmd = "DISPLAY=:0.0 "

55 � . "$BACKUP_PROCESS "

56 � . "$data‑>[4] &";

57 � INFO "Launching $cmd";

58 � system($cmd);

59 � }

60 �}

61

�62 �my $reactor =

63 � Net::DBus::Reactor‑>main();

64 �$reactor‑>run();

 Listing 2: dbus-mount-watcher

Figure 4: The logfile shows the USB stick was identified 20 seconds

after launching the script and the backup process was initiated.

Figure 6: Automatic backup is launched in Ubuntu

immediately after plugging in the USB stick.

Figure 7: The backup was successful, and the tarball

is now safely on the USB stick.

Figure 5: Net::Dbus calls the callback for the

MountAdd signal with these parameters.

Layout:
I short-
ened the
Fig6 cap-
tion box
and
moved
the fig
down.
Please
adjust.
-rls

Features
Perl: D-Bus

May 2011	 Issue 126	 linux-magazine.com | Linuxpromagazine.com	58

the user to click, line 73 sets a timer. The
timer calls the start() function defined
in lines 80-113 as a low priority task,
Glib::G_PRIORITY_LOW. The Glib kernel
will not start this task until it is sure
there are no more GUI draw tasks to
complete.

The timer callback start() expects a
single parameter, which is a reference to
the $pbar progress bar widget. It returns
the value Glib::SOURCE_REMOVE after com-
pleting its work; otherwise, the timer
would repeat the callback after another
timeout, and the backup would restart.

Installation
All the main Linux distributions include
the dbus package. The gdbusviewer tool,
another diagnostics tool besides

dbus‑monitor, can be installed on Ubuntu
with the gq4‑dev‑tools collection. The
required Perl modules are available as
libdatetime-perl, libfile-finder-perl, lib-
gtk2-perl, libglib-perl, libapp-daemon-
perl, liblog-log4perl-perl, and libnet-
dbus-perl from the Ubuntu repositories.

The daemon is then launched by typ-
ing dbus‑mount‑watcher start; if you
want to start the daemon automatically
when you reboot, you can add it below
/etc/init.d/ and register with up‑
date‑rc.d. The graphical backup script
should reside in the same directory as
the daemon, or you could use an abso-
lute path to call it from the daemon.

D-Bus has much more to offer than the
tricks discussed in this column. Applica-
tions like the Pidgin instant messenger

client or the Rhythmbox media player
are tightly integrated with D-Bus, so, be-
sides being simply monitored, they can
be remote controlled via this smart com-
munication mechanism [4]. nnn

001 �#!/usr/local/bin/perl ‑w

002 �#############################

003 �# gtk2‑backup

004 �# Mike Schilli, 2011

005 �# (m@perlmeister.com)

006 �#############################

007 �use strict;

008 �use File::Finder;

009 �use Glib qw/TRUE FALSE/;

010 �use Gtk2 '‑init';

011 �use DateTime;

012

�013 �my $PID;

014 �my $tar = "tar";

015 �my $src_dir =

016 � "/home/mschilli/test";

017 �my $ymd =

018 � DateTime‑>now‑>ymd('');

019

�020 �my ($stick_dir) = @ARGV;

021

�022 �if (!defined $stick_dir) {

023 � die "usage: $0 stick_dir";

024 �}

025 �$stick_dir =~ s#^file://##;

026

�027 �my $dst_tarball =

028 � "$stick_dir/$ymd.tgz";

029

�030 �my $NOF_FILES =

031 � scalar File::Finder‑>type(

032 � "f")‑>in($src_dir);

033

�034 �my $CMD = "$tar zcfv " .

035 � "$dst_tarball $src_dir";

036

�037 �my $window =

038 � Gtk2::Window‑>new(

039 � 'toplevel');

040

�041 �$window‑>set_border_width(

042 � 10);

043 �$window‑>set_size_request(

044 � 500, 100);

045

�046 �my $vbox =

047 � Gtk2::VBox‑>new(TRUE, 10);

048 �$window‑>add($vbox);

049

�050 �my $pbar =

051 � Gtk2::ProgressBar‑>new();

052 �$pbar‑>set_fraction(0);

053 �$pbar‑>set_text("Progress");

054 �$vbox‑>pack_start($pbar,

055 � TRUE, TRUE, 0);

056

�057 �my $cancel =

058 � Gtk2::Button‑>new(

059 � 'Cancel');

060 �$vbox‑>pack_end($cancel,

061 � FALSE, FALSE, 0);

062 �$cancel‑>signal_connect(

063 � clicked => sub {

064 � kill 2, $PID

065 � if defined $PID;

066 � Gtk2‑>main_quit;

067 � }

068 �);

069

�070 �$window‑>show_all();

071

�072 �my $timer =

073 � Glib::Timeout‑>add(10,

074 � \&start, $pbar,

075 � Glib::G_PRIORITY_LOW);

076

�077 �Gtk2‑>main;

078

�079 �#############################

080 �sub start {

081 �#############################

082 � my ($pbar) = @_;

083

�084 � $PID = open my $fh,

085 � "$CMD |";

086

�087 � my $count = 1;

088 � while (<$fh>) {

089 � chomp;

090 � next if m#/$#; # skip dirs

091

�092 � $pbar‑>set_text(

093 � "Backup Progress "

094 � . "($count/$NOF_FILES)"

095 �);

096 � $pbar‑>set_fraction(

097 � $count / $NOF_FILES);

098

�099 � Gtk2‑>main_iteration while

100 � Gtk2‑>events_pending;

101

�102 � $count++;

103 � }

104

�105 � close $fh

106 � or die "$CMD failed ($!)";

107

�108 � $cancel‑>set_label(

109 � "Success. Hooray!");

110 � undef $PID;

111

�112 � return Glib::SOURCE_REMOVE;

113 �}

 Listing 3: gtk2-backup

[1]	� Listings for this article:
http://​www.​linux‑magazine.​com/​
Resources/​Article‑Code

[2]	� Introduction To D-Bus:
http://​www.​freedesktop.​org/​wiki/​
IntroductionToDBus

[3]	� “D-Bus with Perl” by Emmanuel Ro-
driguez: http://​bratislava.​pm.​org/​
presentation/​dbus/​perl‑dbus.​pdf

[4]	� Pidgin integration with D-Bus: http://​
developer.​pidgin.​im/​wiki/​DbusHowto

 Info

Features
Perl: D-Bus

linux-magazine.com | Linuxpromagazine.com	 Issue 126	 May 2011 59

