
There is an alternative that avoids
both these drawbacks – cooperative
multitasking with POE, the Perl Object
Environment [2] centered around its
main developer, Rocco Caputo. The
environment is implemented as a
state machine that runs exactly one
process with a single thread, but has a
userspace “kernel” that allows multiple
tasks to be performed quasi simultane-
ously.

Keeping Track
Developers who want to query share
prices in Perl will typically opt for the
CPAN module Yahoo::FinanceQuote:

use Finance::YahooQuote;
my @quote = U

getonequote($symbol);

Unfortunately, the module works syn-
chronously, and this makes it difficult to
achieve the smooth scrolling effect we
were looking for. The getonequote func-
tion sends a HTTP request to the Yahoo
server, waits for a response and then
returns the results.

We want to keep the display running
while the program is waiting – and Mur-
phy’s law states that someone will drag

another window over the ticker precisely
at this point. In this case the application
has to redraw the concealed area (this is
known as refreshing).

Unfortunately, because it is busy wait-
ing for HTTP results to trickle in, it
doesn’t receive the redraw event, and
this leaves a nasty gray hole on the desk-
top – not a pretty sight.

Asynchronous Approach
It would be more elegant to transmit
a Web request, and get back to re-
freshing the graphical display imme-
diately, without waiting for the results.
When a response from the Yahoo server
finally arrives, it should cause some
kind of alert. That would mean quickly
updating the ticker window and jumping
back into the main GUI loop.

This is exactly what the POE frame-
work does. It provides a kernel where
individual applications register sessions,
and state machines move between states
and exchange messages. I/O activity
is asynchronous. Instead of opening
a file or a socket and waiting for its
data, you simply say “Hey Kernel, I
want to read some information. Can
you wake me up when it becomes avail-
able?”

GUI-based applications are usually
event driven. The program will
typically have a main loop that it

uses to wait for events such as mouse
clicks and keyboard input. It is important
for the program to process these events
without any delay and quickly return to
the main event loop. This prevents the
user from noticing the temporary
unavailability of the interface.

The stock price ticker program we will
be looking at in this month’s article, peri-
odically connects to the Yahoo financial
pages to request an update for selected
share prices (see Figure 1). Depending
on the network connection, a request
including DNS resolution of the server
name may take a few seconds to com-
plete. I would like the application’s
display to keep on working during this
period.

Developers can use multiprocessing or
multithreading to achieve this aim. How-
ever, both techniques make the program
far more complex. Critical sections need
to be protected against parallel access to
ensure data integrity, thus avoiding
errors that might be difficult to debug. If
you have ever needed to analyze a core
dump with 200 active threads, you will
know what I mean.

The Perl Object Environment (POE)

provides a platform for scripts to

perform cooperative multitasking

without any help from the operating

system’s scheduler. This month’s

application lets a Gtk-driven

graphical interface interact with

time-consuming web requests with-

out hiccups. BY MICHAEL SCHILLI

Gtk-GUIs and Web requests play along in the Perl Object Environment

Winning Team Player

68 May 2004 www.linux-magazine.com

Perl: Screen ScrapersPROGRAMMING

Data in the Fast Lane
Although read and write operations are
not actually asynchronous (under the
hood, POE simply uses the non-blocking
syswrite or sysread functions), any avail-
able information is drawn in
or pushed out at top speed.

The cooperative aspect of
POE is the fact that the ses-
sions rely on competing
sessions not to dilly-dally. If a
task does not totally pre-
occupy the CPU, the session
has to hand control back to
the kernel. A single uncoop-
erative part in a program
would impact the whole sys-
tem.

Multitasking with a single
thread facilitates program
development – you don’t
need to worry about locks, there are no
surprises with race conditions, and even
if an error occurs, it is typically easy to
locate. POE will cooperate with the main
event loops of several graphical environ-
ments. POE recognizes both Perl/Tk and
gtkperl automatically and integrates
them seamlessly.

This allows the kernel to assign GUI
events time slots just like the explicitly
defined sessions. This is the answer to
the refresh problem.

Alerting Kernel
The ticker in Listing 2 uses the POE::Ses-
sion state machine as shown in Figure 2.
The initialization phase, _start, generates
the GTK interface and sets the alias
name to ticker to allow us to more easily
identify the session later. Control is
returned to the kernel following this ini-
tial state. The state machine enters the
wake_up state every 60 seconds (via an
alert), or when someone clicks the
Update button in the GUI. This launches
another POE::Component::Client::HTTP
type state machine, and then immedi-
ately hands control back to the kernel.

PoCoCli::HTTP is a so-called com-
ponent of the POE framework: a state
machine that defines its own session
(named useragent in Listing 2, line 73),
accepts Web requests in its request

state, and then enters the
POE framework until it
receives a full HTTP response.
At this point, useragent asks
the kernel to tell the calling
session, ticker, to enter a state
called yhoo_response that was
passed to useragent previ-
ously.

The kernel tells the ticker
session to do exactly that, and
the session accepts the HTTP
response, which is waiting for
the session, refreshes the
share price widgets in the dis-
play, before handing control

back to the kernel without any delay. In
line 69, the POE::Component::Client::
HTTP component launches with
spawn() and specifies that gtkticker/0.01
should appear in the server-side User
Agent string, and that requests should
time out after 60 seconds.

Yahoo Manual
Lines 10 to 12 in Listing 2 define the URL
for Yahoos share price service. The CGI
interface of this service expects two
parameters:
• A format parameter (f=) with the

names of requested fields: s (symbol),
l1 (share price) and c1 (percentage
change since the last stock exchange
working day) and

• a symbol parameter that contains a
comma-separated list of the stock
exchange abbreviations for the listed

companies we are interested in, for
example YHOO,MSFT,TWX.

The Yahoo server responds as follows:

"YHOO",45.38,+0.35
"MSFT",27.56,+0.19
"TWX",18.21,+0.75

Gtkticker accepts the response line by
line, uses the commas to split the strings,
and bundles the information off to the
GUI display.

Home Directory
Configuration
Lines 13 and 14 specify .gtkicker in the
user’s home directory as the symbol file
to be displayed by the ticker. Lines 30
through 37 parse the file line by line, dis-
carding any lines that start with # as
comments (line 33). The implicit for
loop at the end of line 35

... for /(\S+)/g;

executes the expression to its left for all
the words in a line, and leaves the stock
exchange symbol in the $_ variable. This
allows multiple symbols separated by
space characters to exist in a single line.
The push function stacks the stock sym-
bols in the @SYMBOLS array. Listing 1
shows a sample file.

Despite using the POE framework, gtk-
ticker employs regular synchronous I/O
functions to read the configuration file,
as the file is short and the POE kernel is
not running at this point.

Let the Dance Begin
Line 39 defines the ticker state machine.
The inline_states parameter uses a hash

69www.linux-magazine.com May 2004

PROGRAMMINGPerl: Screen Scrapers

Figure 1: The GTK-
based share price
ticker periodically
contacts the Yahoo
financial page.

yhoo_response

Stock Widgets
refreshed

_start

Kernel
wake_up?

event sent to
Yahoo

Returns immediately

Yahoo reply
available ‘Update’ or alert (after

60 seconds)

GTK interface initialized Returns immediately

Figure 2: The gtkticker state machine. After the initialization state, _start, control is handed back to the
kernel. The machine enters the wake_up state every 60 seconds, wakes up another state machine to
perform an HTTP request and hands control back to the kernel.

01 # ~/.gtkticker
02 TWX
03 MSFT
04 YHOO AMZN RHAT
05 DODGX
06 JNJ COKE IBM SUN

Listing 1: Configuration file

in which the program remains until it is
shut down. That’s it!

The POE::Session object construction
shown previously had a side effect. It ran
the start() routine defined in line 58,
which maps to the _start state. The latter
sets the alias name for the session to
ticker and then jumps to my_gtk_init().
This function, which starts in line 98,
constructs the GTK GUI.

GUIs with GTK
Gtk is a CPAN module by Marc
Lehmann, who was so kind as to check
the draft for this article. The module has

actually been replaced by Gtk2, but the
new version has some issues with POE.
Never mind, the venerable GTK module
does a fantastic job.

An object of the Gtk::Window class
represents the main window of the
application. It has a typical menu
bar at the top, giving access to a
File pull-down menus, which in turn
has a single entry for Quit. This
entry uses a callback routine,
Gtk->exit(0), to terminate the applica-
tion. There is a Gtk::AccelGroup object
that allows the user to press [Ctrl]+
[Q] to quit the program. The object adds

reference to map functions to the states.
The kernel will jump to these functions if
and when the machine enters the corre-
sponding state. Line 53 then pushes the
wake_up state for the ticker session to
the kernel

$poe_kernel->post("ticker", U

"wake_up");

via the variable $poe_kernel exported by
POE. Line 55 launches the main kernel
loop

$poe_kernel->run();

70 May 2004 www.linux-magazine.com

Perl: Screen ScrapersPROGRAMMING

001 #!/usr/bin/perl
002 #############################
003 # gtkticker
004 # Mike Schilli, 2004
005 # (m@perlmeister.com)
006 #############################
007 use warnings;
008 use strict;
009
010 my $YHOO_URL =
011 "http://quote.yahoo.com/d?".
012 "f=sl1c1&s=";
013 my $RCFILE =
014 "$ENV{HOME}/.gtkticker";
015 my @LABELS = ();
016 my $UPD_INTERVAL = 60;
017 my @SYMBOLS;
018
019 use Gtk;
020 use POE qw(
021 Component::Client::HTTP);
022 use HTTP::Request;
023 use Log::Log4perl qw(:easy);
024 use Data::Dumper;
025
026 Log::Log4perl->easy_init(
027 $DEBUG);
028
029 # Read config file
030 open FILE, "<$RCFILE" or
031 die "Cannot open $RCFILE";
032 while(<FILE>) {
033 next if /^\s*#/;
034 push @SYMBOLS, $_
035 for /(\S+)/g;
036 }
037 close FILE;
038
039 POE::Session->create(
040 inline_states => {
041 _start => \&start,

042 _stop => sub {
043 INFO "Shutdown" },
044 yhoo_response =>
045 \&resp_handler,
046 wake_up =>
047 \&wake_up_handler,
048 }
049);
050
051 my $STATUS;
052
053 $poe_kernel->post(
054 "ticker", "wake_up");
055 $poe_kernel->run();
056
057 #############################
058 sub start {
059 #############################
060
061 DEBUG "Starting up";
062
063 $poe_kernel->alias_set(
064 'ticker');
065 my_gtk_init();
066
067 $STATUS->set("Startup");
068
069 POE::Component::Client::HTTP
070 ->spawn(
071 Agent =>
072 'gtkticker/0.01',
073 Alias => 'useragent',
074 Timeout => 60,
075);
076 }
077
078 #############################
079 sub upd_quotes {
080 #############################
081
082 my $request =

083 HTTP::Request->new(
084 GET => $YHOO_URL .
085 join ",", @SYMBOLS);
086
087 $STATUS->set(
088 "Fetching quotes");
089
090 $poe_kernel->post(
091 'useragent',
092 'request',
093 'yhoo_response',
094 $request);
095 }
096
097 #############################
098 sub my_gtk_init {
099 #############################
100
101 my $w = Gtk::Window->new();
102 $w->set_default_size(
103 150,200);
104
105 # Create Menu
106 my $accel =
107 Gtk::AccelGroup->new();
108 $accel->attach($w);
109 my $factory =
110 Gtk::ItemFactory->new(
111 'Gtk::MenuBar',
112 "<main>", $accel);
113
114 $factory->create_items(
115 { path => '/_File',
116 type => '<Branch>',
117 },
118 { path =>
119 '/_File/_Quit',
120 accelerator =>
121 '<control>Q',
122 callback =>
123 [sub { Gtk->exit(0) }],

Listing 2: Gtkticker

so-called accelerators to the mouse
controls.

Factory-Made Menus
The menu is created by using the
Gtk::ItemFactory class which is first used
to create a Gtk::MenuBar menu bar. The
menu entries and their subordinate pull-
downs are created using the create_
items() method.

The path parameter specifies the posi-
tion of the menu item – for example,
/_File/_Quit defines the Quit entry below
File in the menu bar. The underscores _
tell Gtk to underline the following char-

acter, allowing the user to press a key-
board shortcut (such as [Alt]+[F]) to
navigate the menu. The callback para-
meter specifies the function that Gtk will
perform whenever the user selects the
entry with the mouse, or presses the key-
board shortcut defined by the accelerator
parameter.

Layout Manager
Two different approaches are used to
arrange widgets geometrically: Gtk::
VBox and Gtk::Table. The Gtk::VBox con-
tainer element aligns the widgets it
contains vertically. The pack_start()

method places the elements from the top
down, while pack_end() stacks widgets
bottom up. We can see that the following
statement:

$vb->pack_start($menu_bar, U

$expand, $fill, $padding);

places the menu bar at the top of
the VBox. In line 132 gtkticker uses
$factory->get_widget(‘<main>‘) to
retrieve the bar’s object by name. The
$expand parameter used in pack_start()
specifies whether the area that the wid-
get occupies should grow if the user

71www.linux-magazine.com May 2004

PROGRAMMINGPerl: Screen Scrapers

124 });
125
126 my $vb = Gtk::VBox->new(
127 0,0);
128 my $upd = Gtk::Button->new(
129 'Update');
130
131 $vb->pack_start(
132 $factory->get_widget(
133 '<main>'), 0, 0, 0);
134
135 # Button at bottom
136 $vb->pack_end($upd,
137 0, 0, 0);
138
139 # Status line on top
140 # of buttons
141 $STATUS= Gtk::Label->new();
142 $STATUS->set_alignment(
143 0.5, 0.5);
144 $vb->pack_end($STATUS,
145 0, 0, 0);
146 my $table =
147 Gtk::Table->new(
148 scalar @SYMBOLS, 3);
149
150 $vb->pack_start($table,
151 1, 1, 0);
152
153 for my $row (0..
154 @SYMBOLS-1) {
155 for my $col (0..2) {
156 my $label =
157 Gtk::Label->new();
158 $label->set_alignment(
159 0.0, 0.5);
160 push @{$LABELS[$row]},
161 $label;
162
163 $table->attach_defaults(
164 $label, $col, $col+1,

165 $row, $row+1);
166 }
167 }
168
169 $w->add($vb);
170
171 # Destroying window
172 $w->signal_connect(
173 'destroy', sub {
174 Gtk->exit(0)});
175
176 # Pressing update button
177 $upd->signal_connect(
178 'clicked', sub {
179 DEBUG "Sending wakeup";
180 $poe_kernel->post(
181 'ticker', 'wake_up')}
182);
183 $w->show_all();
184 }
185
186 #############################
187 sub resp_handler {
188 #############################
189 my ($req, $resp) =
190 map { $_->[0] }
191 @_[ARG0, ARG1];
192
193 if($resp->is_error()) {
194 ERROR $resp->message();
195 $STATUS->set(
196 $resp->message());
197 return 1;
198 }
199
200 DEBUG "Response: ",
201 $resp->content();
202
203 my $count = 0;
204
205 for(split /\n/,

206 $resp->content()) {
207
208 my($symbol, $price,
209 $change) =
210 split /,/, $_;
211
212 chop $change;
213 $change = "" if
214 $change =~ /^0/;
215
216 $symbol =~ s/"//g;
217 $LABELS[$count][0]->
218 set($symbol);
219 $LABELS[$count][1]->
220 set($price);
221 $LABELS[$count][2]->
222 set($change);
223 $count++;
224 }
225
226 $STATUS->set("");
227
228 1;
229 }
230
231 #############################
232 sub wake_up_handler {
233 #############################
234 DEBUG("waking up");
235
236 # Initiate update
237 upd_quotes();
238
239 # Re-enable timer
240 $poe_kernel->delay(
241 'wake_up', $UPD_INTERVAL);
242 }

Listing 2: Gtkticker

the subroutine tidies up the Gtk session
and quits the program. After completing
the widget definitions, the show method
(line 183) displays them in the main
window (line 183) of the screen.

The Kernel Strikes Back
In the yhoo_response state, the POE ker-
nel jumps to the function listed below
line 187, resp_handler. By definition,
POE::Component::Client::HTTP will store
a request and a response packet in ARG0
and ARG1 when this happens. POE uses
this slightly strange approach to passing
parameters after introducing new func-
tions representing numerical constants,
such as KERNEL, HEAP, ARG0, ARG1.
POE’s authors expect programmers to
use them to index the array of function
parameters, @_. For example, $_[KER-
NEL] will always return the kernel
object, helping to keep the index that
KERNEL points to transparent.

The request and response packets just
mentioned are references to arrays,
whose first elements contain HTTP::
Request or HTTP::Response objects. The
map command in line 190 extracts them
to $req and $resp.

If a HTTP error occurs, line 195 gener-
ates an appropriate message in the status
widget and the function returns. Other-
wise, the two dimensional global array of
label widgets is refreshed. The widgets
display the stock exchange symbol, the
current price, and the change as a per-
centage (the special case zero percent is
simply ignored).

Periodically Delayed Alert
A wake_up event in the POE kernel calls
the wake_up_handler() routine defined
in line 232 and the following lines. It
calls the upd_quotes() function, which is
implemented in line 79 and following.
The function defines a HTTP::Request
object and uses an event to send it to the
POE::Component::Client::HTTP compo-
nent. The target state for the ticker is set
to yhoo_response.

After completing these preparatory
steps, wake_up_handler() uses the
kernel’s delay() method to set an alert.
This will cause a wake_up event to occur
in the ticker session when the num-
ber of seconds defined as the
$UPD_INTERVAL (60 seconds in this
case) has elapsed. From this point

onward, the ticker will automatically
update its share prices every 60 seconds,
without the user having to press the
Update button.

Installation
It is best to use a CPAN shell to install
the required POE modules, POE and
POE::Component::Client::HTTP. If the
POE::Component::Client::DNS module is
also installed, DNS requests will then be
performed asynchronously; gethostby-
name() may otherwise cause a slight
delay.

Installing Gtk from CPAN means
resolving a few dependencies and
caused a few issues on my own system.
However,

touch ./Gtk/build/U
perl-gtk-ref.pod
perl Makefile.PL U

--without-guessing

in the distribution directory, followed
by make install worked around these
obstacles.

The script logs debugging messages to
STDOUT, if this gets in your way, simply
set the verbosity via Log::Log4perl (also
from CPAN) and in line 27 from $DEBUG
to $ERROR. It is fascinating to see how
smooth the display is. Even if you are
fooling around with the menu while the
application is performing an automatic
update across a slow network, the GUI
stays intact. Expensive-looking, but
cheaply implemented! ■

drags the mouse to expand the main
window. If so, fill specifies whether
the widget itself should also grow –
this will allow buttons to grow to
enormous proportions. Finally, $padding
specifies the minimum number of
pixels that should separate the widget
vertically from its neighbors. Gtkticker
displays status messages in an un-
obtrusive Gtk::Label widget directly
above the Update button. The set_align-
ment() method uses the following
syntax

$STATUS->set_alignmentU
(0.5, 0.5);

to align the text horizontally and verti-
cally. If you want to experiment, a
horizontal value of 0.0 stands for left-
justified, and 1.0 for right-justified text.

In contrast to Gtk::VBox, the Gtk::
Table container element provides Perl
programmers with a tool to conveniently
arrange widgets in a table. The attach_
defaults() method expects five para-
meters: the widget, which is to be
aligned and two column and row coordi-
nates between which the widget will
be located. For example, the following
statement:

$table->attach_defaultsU
($label, 0, 1, 1, 2);

specifies that the Gtk::Label object that
$label points to will be added to the first
row (“between 0 and 1”) and the second
column (“between 1 and 2”) of a table
called $table.

And Action!
You can assign actions to Gtk::Button
type widgets. Gtk performs the action
assigned when a user presses the button.
The method called in line 177,
signal_connect(), specifies that Gtk
should send a wake_up event to the POE
kernel when the user clicks the Update
button.

The main window also has an action
assigned – users can click the X in the
top right-hand corner of the window to
terminate the application. As in the fol-
lowing code:

$w->signal_connect('destroy',
sub {Gtk->exit(0)});

72 May 2004 www.linux-magazine.com

Perl: Screen ScrapersPROGRAMMING

[1] Listings for this article:
http://www.linux-magazine.com/
Magazine/Downloads/42/Perl/

[2] POE: http://poe.perl.org

[3] Jeffrey Goff,“A Beginner’s Introduction to
POE”, 2001: http://www.perl.com/pub/a/
2001/01/poe.html

[4] Matt Sergeant,“Programming POE”, talk
at TPC 2002: http://axkit.org/docs/
presentations/tpc2002

[5] Gtkperl: http://gtkperl.org

[6] Gtkperl tutorial:
http://personal.riverusers.com/
~swilhelm/gtkperl-tutorial/

[7] Eric Harlow,“Developing Linux
Applications with GTK+ and GDK”:
New Riders, 1999, ISBN 0735700214

INFO

