
S
ystem administration shell scripts
are easily put together using just
a few shell commands. An instal-

lation routine might use cp, mv, and
chmod; a query script might depend
upon grep, awk, or sed. If you need
more, however, a shell script can start to
become complex, or even ugly; and
more times than not, you come to a dead
end. The shell takes a very roundabout
route to get to some places, and there
are other places a shell script just can’t
go.

Creative programmers will always find
an (admittedly obscure) way to work
around the obstacles, and shells such as
Bash, Ksh, and Tcsh have many features
found in genuine programming lan-
guages. Also, if you prefer to avoid typ-
ing, standard Perl is not recommended
for simple shell tasks. After all, who
wants to have to enter something like
the following:

open FILE, "<filename" or
die "Cannot open filename
($!)";

when a simple cat filename would open
a file for processing in a subsequent
pipe? Enter Sysadm::Install, a new CPAN
module that exports functions such as
cp, mv, untar, mkd, rmf (rm -f), and cd

to help shell scripters feel more at home
with Perl.

The module also has features for user
interaction, file manipulation, and
downloads, as well as a collection of
simplified interfaces for calling external
programs.

Transformer
topng in Listing 1 is a script that calls the
convert tool to convert a group of JPG
images to PNG. It uses use
Sysadm::Install qw(:all) to import all
available functions into the current
namespace before going on to use two of
them: sysrun() to call an external pro-
gram, and rmf(), which is the

Sysadm::Install version of rm -f. If the
call to

topng *.jpg

in a directory full of JPGs returns quietly,
all PNG files are done. Need more infor-
mation? No problem: as Sysadm::Install
supports the Log::Log4perl system, we
can simply add

use Log::Log4perl qw(:easy);
Log::Log4perl->U
easy_init($DEBUG);

to the start of the script to make it more
talkative:

2004/12/03 23:25:20 sysrun:U
convert 1.jpg 1.png
2004/12/03 23:25:32 rmf 1.jpg
2004/12/03 23:25:32 sysrun:U
convert 2.jpg 2.png
2004/12/03 23:25:44 rmf 2.jpg

But this is not the only reason why the
script uses sysrun() and rmf() from the
Sysadm::Install treasure trove, rather
than the equivalent standard Perl func-
tions system() and unlink(). Sysrun()
and rmf() automatically use run-or-die
mode, as do all Sysadm::Install func-
tions. Under the hood, the results are

Perl gives you better shell

scripts. Sysadm::Install, a new

module from CPAN, helps shell

addicts let go of Bash.

BY MICHAEL SCHILLI

Emulating Shell Functions in Perl

PERL SHELL SCRIPTS

75

PROGRAMMINGPerl: Shell Functions

75ISSUE 52 MARCH 2005W W W . L I N U X - M A G A Z I N E . C O M

w
w

w.photocase.de

01 #!/usr/bin/perl -w
02 #############################
03 # topng -- convert jpgs->png
04 #############################
05 use Sysadm::Install qw(:all);
06
07 for $jpg (@ARGV) {
08 ($png = $jpg) =~
09 s/jpg$/png/;
10 sysrun "convert",
11 $jpg, $png;
12 rmf $jpg;
13 }

Listing 1: topng

The sample untar script in Listing 2 is
simply called with the name of the tar
archive:

untar pari-2.1.4.tgz

Since pari-2.1.4.tgz properly contains a
top directory, this will just unpack the
contents into pari-2.1.4. But it’s comfort-
ing to know that we’d be covered in
either case!

If you prefer information on the pro-
ceedings rather than silence, you can set
the -v flag for more details on what is
going on under the hood.

If I had a Hammer: Perl on
Your Coffee Break
Some install scripts prompt users for
interactive input. In most cases you sim-
ply need to press the Enter key, and this
is exactly what the hammer() function
does. Perl-Build is a typical example. You
download the tarball from perl.com,
unpack the archive, go to the top direc-
tory, launch ./Configure, and you are
bombarded with a plethora of questions.
If you are sure that the defaults will be
fine for your machine, you can either set
the -d flag or keep pressing enter.

The mkperl script in
Listing 3 download()s the
current stable Perl tarball
from perl.com, runs
untar() to unpack it, con-
figures the release, and
launches into the build. It
uses the -d option of Con-
figure to cut down on the
noise, but runs hammer()
on the last prompt to
brush off the configura-

tor’s last question on editing the configu-
ration file manually.

User Input
Some scripts need the user to confirm
that he or she is happy with the default,
or to select one of the five options on
display. Sysadm::Install gives you the
ask and pick functions for this task. ask
prompts the user to accept the default
text or enter another. pick shows the
user an enumerated list of options and
prompts the user to select the number
corresponding with a specific option.

The script in Listing 4 input first gets a
text string from the user then gives the
user a choice of three options:

Name U

[No-Name-Entered]> Bill Gates
Name: Bill Gates

[1] 0-100K
[2] 100K-200K
[3] 300K-
Salary [1]> 3
Salary: 300K-

The values returned by ask and pick cor-
respond to the entry or the selected

carefully checked, and in case of error, a
call to die() automatically interrupts the
script. Shell programmers who previ-
ously needed to type in something like
the following:

cp a b || exit 1
mv c d || exit 1

can now relax. topng doesn’t even make
use of perl’s strict mode, which is other-
wise used religiously in the world of
Perl. This is a quick-and-dirty script that
does not try to deny its heritage.

Elegantly Unpacked
If you do not use tar on a daily basis,
you may not always be able to recall the
correct syntax for a specific tar com-
mand. This memory lapse could be fatal.
Imagine, for instance, using the cf option
instead of xf. This unfortunate mistake
would overwrite the archive instead of
unpacking it. Also, some packagers for-
get to add a top-level directory. If this
happens, the tar archive will contain a
whole bundle of files that will clutter up
your directory when you unpack them.
untar() prevents these problems from
happening. The untar() script expects
the name of a tar file, discovers whether
the file needs to be decompressed, and
then unpacks the contents of the
archive. If the archive is the free-for-all
type that does not give you a top-level
directory, the tool creates a directory and
stores the archive content in that direc-
tory.

Perl: Shell FunctionsPROGRAMMING

76 ISSUE 52 MARCH 2005 W W W . L I N U X - M A G A Z I N E . C O M

01 #!/usr/bin/perl -w
02 #############################
03 # untar -- Untar tarballs
04 #############################
05 use strict;
06
07 use Log::Log4perl qw(:easy);
08 use Getopt::Std;
09 use Sysadm::Install 'untar';
10
11 getopts('v', \my %opts);
12
13 Log::Log4perl->easy_init(
14 $opts{v} ? $DEBUG : $ERROR);
15
16 for my $tar (@ARGV) {
17 untar($tar);
18 }

Listing 2: untar

01 #!/usr/bin/perl -w
02 #############################
03 # mkperl - Download the
04 # latest stable perl,
05 # configure and install it.
06 #############################
07 use strict;
08
09 use Log::Log4perl qw(:easy);
10 Log::Log4perl->easy_init(
11 $DEBUG);
12
13 use Sysadm::Install qw(
14 download hammer untar

15 cd sysrun);
16
17 download
18 "http://www.perl.com/" .
19 "CPAN/src/stable.tar.gz";
20
21 untar "stable.tar.gz";
22 cd "stable";
23
24 hammer("./Configure", "-d",
25 "-D", "prefix=/home/" .
26 "mschilli/PERL-test");
27
28 sysrun("make install");

Listing 3: mkperl

Figure 1: This vim macro maps the initial lines of a Perl

script to the [!]+[P] key combination and toggles the editor

to insert mode.

value. In this case, the values are "Bill
Gates" and 300K-.

Backslashitis
If you make frequent use of Perl one-lin-
ers, you may be familiar with the prob-
lem of escaping Perl code in the com-
mand line to prevent the shell from eat-
ing it up. For example,

perl -e "print "Hi!\n""

will not work, as the shell will mangle
the internal quotes and the backslash,
and the exclamation mark will dig up a

command from the his-
tory list. However, you
could escape the endan-
gered characters using a
backslash (not forgetting
to escape the backslash
with yet another back-
slash, of course):

perl -e "print
\"Hi\!\\n\""

Single quotes are an alternative, but then
this stops the shell from substituting
variables, and single quotes again need
to be escaped in the code. This gets
worse if you need to run the command
on a remote machine, rather than
locally, using the ssh -t host command.
This means escaping any non-standard
characters (including the special charac-
ters and escape characters you escaped
previously!) This can lead to a severe
attack of backslashitis:

ssh -t somehost "perl -e U

\"print \\\"Hi\\\!\\\\n\\\"\""

Confused? Thought so. But there is a
way of avoiding this using the qquote()
function that Sysadm::Install exports to
add double quotes to your string and
escape any quotes and backslashes con-
tained in the string. If the second para-

PROGRAMMINGPerl: Shell Functions

01 #!/usr/bin/perl -w
02 #############################
03 # input -- ask() and pick()
04 #############################
05 use strict;
06
07 use Sysadm::Install qw(:all);
08
09 my $name = ask "Name",
10 "No-Name-Entered";
11
12 print " Name: $name\n";
13
14 my $salary = pick "Salary",
15 ["0-100K", "100K-200K",
16 "300K-"], 1;
17
18 print " Salary: $salary\n";

Listing 4: input
Figure 2: The results of the macro from Figure 1. Script

authors can press [!]+[P] and get down to writing their

scrips without further ado.

WWW.LINUX-MAGAZINE.COM/NEWSLETTER

Want to know what’s up next?Want to know what’s up next?
Subscribe Subscribe to Linux Magazine Preview,

our free monthly email newsletter!

if you need to handle large amounts of
data.

Slurp
Scripts often need the whole set of data
from a file. Perl 6 will address this prob-
lem by providing a slurp() function.
Sysadm::Install already has the useful
slurp() function, along with the opposite
function, blurt(), which has the effect of
moving stored data back into a file in
one fell swoop.

For example, if you wish to tell Linux
not to enter the X GUI after booting but
to display a text mode login for the user
instead, you need to modify /etc/inittab
by changing the 5 in the following line to
a 3:

id:5:initdefault:

slurp() and blurt() make this change
quite simple, as Listing 5 (fixinittab)
shows.

You can make this even more com-
pact, as Listing 6 demonstrates. In a sim-
ilar way to Perl’s inline edit mode (perl
-p -i -e "..."), Sysadm::Install gives you a
pie() function. The pie() function
expects at least two arguments: a refer-
ence to user defined callback, and one or
more file names. pie() parses the files
specified with the command one by one,
calls the callback for each line, and
replaces the line with the value returned
by the function. After completing these
changes, pie() writes the results back to
the original file(s).

If you use the substitution operator,
remember that s/a/b/ does not return
the resulting string but the number of
replacements. If the callback is a simple
substitution function, s/a/b/; $_; makes

sure the resulting string is substituted
back into the file.

Tired of Typing?
Finally, a tip for those who want to cut
down on keyboard penetration. Instead
of typing #!/usr/bin/perl and use
Sysadm::Install qw(:all), you can simply
define a vim macro, as shown in Figure
1. The vim macro assigns an insert
command, followed by the first seven
lines of a Sysadm::Install script, to the !P
(P for Perl) key combination in vi’s
command mode: a Perl-Shebang line,
some dressing, a template for the script
name, what the script does, and your
name. In .vimrc, the command has to be
written in a single line. The newlines,
which are represented by ^M later, are
created by pressing the [CTRL]+[V] key
combination, followed by [Return], in
Vim input mode.

You can simply type vi test-script to
start a new script. [!]+[P] adds the
header and switches vi to insert mode. ■

meter you specify is :shell, qquote()
extends this protection to the dangerous
dollar sign, the explosive exclamation
mark, and the big bad backquote.

Machine Escapism
Starting in line 10, Listing 7 ips defines a
script that runs the ifconfig command
and extracts the IP addresses of all net-
work interfaces. Line 18 strips the new-
lines and superfluous blanks out of the
script text, and in line 21 the qquote()
function formulates a compact double-
quoted string that the script then
appends to perl -e.

Line 23 adds another round of quote()
for the SSH command, before system()
finally runs the following command to
collect the IP addresses from somehost
without you needing to install a script
on that machine:

ssh -t somehost "perl -e \" U

\\\$data = \\\`ifconfig\\\`; U

while(\\\$data =~ /inet addr:U
(\\\\S+)/g) { print U

\\\"\\\$1\\\\n\\\"; } \""

Of course, you could just as easily return
the ifconfig results to your local host and
continue the process there, but a mobile
script can be a more practical approach

Perl: Shell FunctionsPROGRAMMING

78 ISSUE 52 MARCH 2005 W W W . L I N U X - M A G A Z I N E . C O M

[1] Listings for this article:
http://www.linux-magazine.com/
Magazine/Downloads/52/Perl

[2] Sysadm::Install: http://search.cpan.
org/~mschilli/Sysadm-Install-0.09/

INFO

Michael Schilli
works as a Software
Developer at Yahoo!,
Sunnyvale, Califor-
nia. He wrote “Perl
Power” for Addison-
Wesley and can be
contacted at mschilli@perlmeister.
com. His homepage is at
http://perlmeister.com.

TH
E

A
U

TH
O

R

01 #!/usr/bin/perl
02 #############################
03 # fixinittab
04 #############################
05 use Sysadm::Install qw(:all);
06
07 $file = "/etc/inittab";
08 $data = slurp $file;
09 $data =~ s/id:5:initdefault:/
10 id:3:initdefault:/x;
11 blurt $data, $file;

Listing 5: fixinittab

01 #!/usr/bin/perl
02 #############################
03 # fixinittab-pie
04 #############################
05 use Sysadm::Install qw(:all);
06
07 pie(sub {
08 s/id:5:initdefault
09 /id:3:initdefault/gx; $_;
10 }, "/etc/inittab");

Listing 6: fixinittab-pie

01 #!/usr/bin/perl -w
02 #############################
03 # ips -- run a script on a
04 # remote machine
05 #############################
06 use strict;
07
08 use Sysadm::Install 'qquote';
09
10 my $script = q{
11 $data = `ifconfig`;
12 while($data =~
13 /inet addr:(\S+)/g) {

14 print "$1\n";
15 }
16 };
17
18 $script =~ s/\s+/ /g;
19
20 my $cmd = "perl -e " .
21 qquote($script, ":shell");
22
23 $cmd = "ssh -t somehost " .
24 qquote($cmd, ":shell");
25
26 system($cmd);

Listing 7: ips

