
A conspiracy theory says that
“Revolution 9” by the Beatles
played backward contains a

message from the band. Just recently, I
was listening to “Work It,” by Missy El-
liot, on web radio and noticed that, de-
spite hearing the song many times since
it was released in 2002, I couldn’t under-
stand part of the chorus. Although this
happens frequently to non-native speak-
ers like myself, this time, Wikipedia [1]
solved the puzzle by revealing that Mis-
sie had played her vocals backward!

Play It Again …
What music aficionados now refer to as
backmasking [2] was a popular pastime

back in the days of my youth. At the
time, there were no ego-shooters and, as
I started to get bored with politically cor-
rect wooden toys, the only thing left was
to mix the chemicals that my doting par-
ents had brought back from the drug-
store and see how loud an explosion I
could create. I also had a cassette re-
corder that I had managed to talk into
playing tapes backward by hacking the
drive. I would speak the magic words
“Redro Kertesack!” into the mic, and
when you played it back, the loudspeak-
ers would say “Kkkassettrekorrdeeer!” in
an accent somewhere between Eastern
European and Martian: hours of fun for
the whole family!

When you run the script in Listing 1 at
the command line, it displays the footer
line shown in Figure 1 and prompts you
to press the R (for Record) key to record
a message via the microphone [3]. While
you are recording, the menu in Figure 2
tells you that pressing S (for Stop) will
stop the recording and that P (for Play)
will play pack the resulting Ogg file
backward. During playback, the text in
Figure 3 appears; it is immediately re-
placed by the menu in Figure 1 when it
runs out of sound data.

Curses Dancing with POE
The minimalist graphical interface
comes courtesy of the Curses::UI::POE
module, which combines the graphic
routines from the Curses library with the
POE multitasking environment. Al-
though the script has to handle lengthy
tasks such as recording a sound file, re-

Michael Schilli whips up a Perl application that plays arbitrary micro-

phone recordings backward. By Michael Schilli

Perl script runs a digital recorder backward

yvruT yspoT

Figure 2: During recording: S stops record-

ing and P plays it back … backward.

E
d
y

ta
 P

aw
low

ska
, 12

3
R

F

Figure 1: Pressing the R key starts the

recording.

Figure 3: The flipit script uses the Sox tool

to reverse the recording.

PROGRAMMINGPerl: Flip It

1ISSUE 113April 2010

versing it, or playing it back, I want the
GUI to respond to user input without
delay. Experienced followers of this col-
umn will recall that POE, the cooperative
multitasking environment, uses an asyn-
chronous approach that often causes
newcomers difficulty. But once you’ve

gotten the hang of it, you can quickly
build robust applications.

The call to the constructor in line 13
sets the color_support option to enable
color at the console and defines two
states that are typical for POE. POE en-
ters the first of these, _start, immediately

after starting the so-called POE kernel;
for all intents and purposes, this is the
mother of all states in POE’s state ma-
chine. Line 15 saves a typical POE data
structure, the session heap, in the global
$HEAP variable to allow access to ses-
sion data from parts of the script called

001 �#!/usr/local/bin/perl ‑w

002 �use strict;

003 �use POE;

004 �use POE::Wheel::Run;

005 �use Curses::UI::POE;

006 �use File::Temp qw(tempfile);

007 �use Sysadm::Install qw(:all);

008 �use POSIX;

009

�010 �our $HEAP;

011

�012 �my $CUI =

013 � Curses::UI::POE‑>new(

014 � ‑color_support => 1,

015 � inline_states => {

016 � _start => sub {

017 � $HEAP = $_[HEAP];

018 � },

019 � play_ended =>

020 � \&footer_update,

021 � }

022 �);

023

�024 �my $WIN =

025 � $CUI‑>add("win_id",

026 � "Window");

027

�028 �my $FOOT = $WIN‑>add(

029 � qw(bottom Label

030 � ‑y ‑1 ‑paddingspaces 1

031 � ‑fg white ‑bg blue)

032 �);

033

�034 �footer_update();

035

�036 �$CUI‑>set_binding(

037 � sub { exit 0; }, "q");

038 �$CUI‑>set_binding(

039 � \&play_flipped, "p");

040 �$CUI‑>set_binding(\&record,

041 � "r");

042 �$CUI‑>set_binding(

043 � \&record_stop, "s");

044

�045 �$CUI‑>mainloop;

046

�047 �#############################

048 �sub record {

049 �#############################

050 � if (defined

051 � $HEAP‑>{recorder}‑>{wheel})

052 � {

053 � return; # Still recording

054 � }

055

�056 � my ($fh, $tempfile) =

057 � tempfile(

058 � SUFFIX => ".ogg",

059 � UNLINK => 1

060 �);

061

�062 � my $wheel =

063 � POE::Wheel::Run‑>new(

064 � Program => "rec",

065 � ProgramArgs => [$tempfile],

066 � StderrEvent => 'ignore',

067 �);

068

�069 � $HEAP‑>{recorder} = {

070 � wheel => $wheel,

071 � file => $tempfile,

072 � };

073

�074 � $FOOT‑>text("Recording ... "

075 � . "([s] to stop, "

076 � . "[p] to play)");

077 � $FOOT‑>draw();

078 �}

079

�080 �#############################

081 �sub record_stop {

082 �#############################

083 � my $wheel =

084 � $HEAP‑>{recorder}

085 � ‑>{wheel};

086

�087 � return if !defined $wheel;

088

�089 � $wheel‑>kill(SIGTERM);

090 � delete $HEAP‑>{recorder}

091 � ‑>{wheel};

092 � footer_update();

093 �}

094

�095 �#############################

096 �sub footer_update {

097 �#############################

098 � my $text = "[r] to record";

099

�100 � if (defined

101 � $HEAP‑>{recorder}‑>{file}){

102 � $text .= ", [p] to play";

103 � }

104

�105 � $text .= ", [q] to quit";

106

�107 � $FOOT‑>text($text);

108 � $FOOT‑>draw();

109 �}

110

�111 �#############################

112 �sub play_flipped {

113 �#############################

114 � if (defined

115 � $HEAP‑>{recorder}‑>{wheel})

116 � {

117 � # Recording active? Stop.

118 � record_stop($HEAP);

119 � }

120

�121 � $FOOT‑>text("Playing ...");

122 � $FOOT‑>draw();

123

�124 � my $recorded =

125 � $HEAP‑>{recorder}‑>{file};

126

�127 � return

128 � if !defined $recorded;

129

�130 � my $wheel =

131 � POE::Wheel::Run‑>new(

132 � Program => \&sox_play,

133 � ProgramArgs => [$recorded],

134 � StderrEvent => 'ignore',

135 � CloseEvent => 'play_ended',

136 �);

137

�138 � $HEAP‑>{players}

139 � ‑>{ $wheel‑>ID } = $wheel;

140 �}

141

�142 �#############################

143 �sub sox_play {

144 �#############################

145 � my ($recording) = @_;

146

�147 � my ($fh, $tmpfile) =

148 � tempfile(

149 � SUFFIX => ".ogg");

150

�151 � tap "sox", $recording,

152 � $tmpfile, "reverse";

153 � tap "play", $tmpfile;

154

�155 � unlink $tmpfile;

156 �}

Listing 1: flipit

Perl: Flip ItProgramming

2 ISSUE 113 April 2010

by event handlers of the graphical inter-
face. POE enters the second state, play_
ended, after successfully playing a re-
corded sound backward. For this case,
line 20 defines the footer_update() han-
dler, which modifies the text showing
the recording status in the footer bar.

Widgets on Screen!
The GUI comprises a main window,
$WIN, and a footer line, $FOOT. The
main window is brought to life by the
Curses::UI::POE module’s add() method
in line 25. The former simply passes
things on to Curses::UI or, to be more
precise, Curses::UI::Container. The first
parameter is the ID for the window (set
to "win_id" in the script), and the sec-
ond parameter, "Window", defines the
class of the widget to create.

The second widget, the footer with the
instructions concerning permitted user
actions, is created in line 28. In a typi-
cally GUI style, the parent widget, $WIN,
calls the add() method to create the
footer widget it includes. The ‑fg white
and ‑bg blue values define white fore-

ground type against a blue background.
The first parameter, the string bottom, is
the ID of the new window we created;
the second, Label, is the widget class.
The value of ‑1 for the ‑y parameter puts
the label right down at the bottom of the
window. The ‑paddingspaces option ex-
tends the label to the horizontal margin
of the surrounding main window.

The label has a text() method that de-
letes and sets the text in the footer bar.
The footer_update() function called in
line 34 refreshes the newly defined, and
temporarily empty, footer with the de-
tails of the user commands permitted
after program started.

Ready to Rumble
Lines 36-43 define what happens if the
user presses the Q (Quit), P (Play), R
(Record), or S (Stop Recording) buttons.
If Q is pressed, flipit calls the exit() func-
tion, which quits the program. The GUI
cleans itself up and neatly collapses.

The handler functions assigned here,
play_flipped() (play the audio file back-
wards), record() (start recording), and

record_stop() (stop recording) are de-
fined lower down in the script. To keep
things simple, all of these functions ac-
cess the global $HEAP and global widget
variables, although this occurs indirectly
via the footer_update() function.

In typical GUI style, the program then
enters the main event loop in line 45. It
stays in the loop and keeps processing
user input until somebody presses Q. If
the user presses R, the GUI jumps to the
record() function in line 48. It first
checks that a recording is in progress,
and if so, it simply cancels by calling re‑
turn, thus ignoring the keypress.

Sox Audio Tool
If no recording is in progress, the temp‑
file() function from the File::Temp mod-
ule creates a temporary file with an .ogg
suffix. Perl’s automatic wrecker’s ball
will automatically destroy this when the
program terminates, thanks to the UN‑
LINK option that was set.

The .ogg suffix is important because
the sox tool that will use it determines
the encoding method for the audio file.

PROGRAMMINGPerl: Flip It

3ISSUE 113April 2010

[1]	� “Work It” by Missy Elliott: http://​en.​
wikipedia.​org/​wiki/​Work_It_(Missy_
Elliott_song)

[2]	� Backmasking: http://​en.​wikipedia.​
org/​wiki/​Backmasking

[3]	�L istings for this article: ftp://​www.​
linux‑magazin.​de/​pub/​listings/​
magazin/​2010/​03/​Perl

[4]	� Michael Schilli’s guide to recording
with the flipit script: http://​www.​
youtube.​com/​watch?​v=LdSTIa2Tx4o

INFO

POE uses a POE::Wheel::Run object to
launch external programs, so the GUI
can continue without interruption and
even trigger actions if the spawned child
program terminates. The wheel in line
62 simply ignores any events that occur
as Stderr output, (StderrEvent). Only the
user can stop the recorder.

The program called here, rec, is in-
cluded with the sox package (as is the
play utility I will use later), and I only
need to pass it the name of the audio file
to create it. The rec program will use an
internal laptop microphone or an exter-
nal mic plugged into the sound card for
recording. Note that POE::Wheel::Run
expects two separate parameters for the
program to be called and the parameter
list for the program: Program and Progra‑
mArgs, respectively.

The code as of line 63 will not delay
the GUI at all, by the way; any required
actions happen in the background. To
avoid the wheel losing its last reference
when the record function exits, thus fall-
ing victim to Perl’s garbage collector,
line 69 stores a reference to it as recorder
in the POE-specific $HEAP. It also stores
the name of the temporary file to allow
the play function to access it later on. Fi-
nally, record() updates the footer to tell
the user that they can press S to stop and
P to play.

Stop
When the S key is pressed, it’s the re‑
cord_stop() function’s turn; it first
checks that a wheel is running. If not,
somebody must have pressed S without
a recording actually being in progress.
Otherwise, line 89 shoots down the re-
cording program that’s running by send-

ing a SIGTERM signal
gleaned from the POSIX
module. Line 90 then re-
moves the reference to the
abruptly terminated wheel
from the $HEAP.

The footer_update()
function uses the text()
method to update the
footer line and then calls
draw() to redraw the wid-
get onscreen.

The play_flipped play
handler first stops any re-
cordings that are in prog-
ress and, in line 131, calls
the play wheel. The wheel
defines a CloseEvent, which enters the
play_ended POE state defined in line 19
when the sox_play() function (lines 143-
156) called by the wheel returns. POE
doesn’t waste time here either, but runs
sox_play() asynchronously and commu-
nicates with its output, error, and end
events.

To avoid this wheel collapsing when
the script exits the scope of the play_
flipped function (which happens before
the wheel starts the external function be-
cause of the asynchronous call), line 138
stores a reference to it in the $HEAP.
Each wheel has a unique ID within a
POE session, and because play_flipped()
stores the reference under this ID, users
could launch multiple playbacks in par-
allel. If you want to try this out, you can
press the P three or four times in succes-
sion.

Flipped
The sox_play function creates another
temporary, and initially empty, .ogg file

and passes it to the sox
utility by calling the CPAN
Sysadm::Install module’s
tap() function:

sox input.ogg U

 output.ogg reverse

The reverse() option tells
sox not simply to copy the
output into another file
but to reverse it while
doing so. The sox play
utility gets the results in
line 153 and outputs the
file via the sound card.
Line 155 then deletes the

flipped file because calling sox_play
again will create a new file.

Activating the Mic
For rec to enable the correct microphone,
I called the alsamixer audio utility for
my machine. The start page shows the
Playback parameters, which relate to
data output (Figure 4). F4 switches to
Capture mode to adjust microphone set-
tings (Figure 5). For an external, plugga-
ble microphone, set the entry in Input So
to Mic. If your laptop mic is good
enough, you can use the arrow keys to
set Front Mic in Alsamixer. The Digital
slider sets the sensitivity. Pressing Esc
quits Alsamixer and keeps your changes.

Installation
The POE, POE::Wheel::Run, Curses::​
UI::POE, and Sysadm::Install modules
and their dependencies are included
with some recent Linux distributions, or
you can run a CPAN shell to install
them. As a special service, you can
watch my training video [4] to learn how
to say Linux Magazine backward and
enjoy flipit’s rendering. n

Figure 4: Playback configuration mode after starting

Alsamixer.

Figure 5: F4 switches to Capture mode. The left “Input So”

must read “Front Mic” if you will be using the laptop’s built-

in microphone. The “Digital” slider sets the record volume.

Perl: Flip ItProgramming

4 ISSUE 113 April 2010

PROGRAMMINGPerl: Flip It

5ISSUE 113April 2010

