
O
pen source projects like Catalyst
use IRC channels to provide sup-
port; experts wait for user re-
quests and then step in to give

help. That said, IRC chat can make it dif-
ficult for the helpers to focus on their on-
going work. And, if the channel is full,
conversations are always in full swing.
The Perl bot I will describe in this article
listens on a specific IRC channel and no-
tifies its master when certain keywords
occur.

The first step in creating an IRC bot, is
fairly simple. After all, the CPAN
Bot::BasicBot module that I’ve covered
before provides an easily extensible
framework for any kind of IRC bot. But
how can the bot attract the attention of
its hard-working user? Instant messaging
with pop-up dialogs is one useful ap-
proach, and Pidgin provides a versatile
client that supports common protocols
such as Yahoo! Messenger, Google Talk,
AIM, or MSN.

Chat via Web API
Some time ago, Yahoo! opened a web
API [1] to its Messenger service whereby
users would first log in and then use
HTTP requests to exchange messages
with other Yahoo! Messenger users. The
bot script introduced here, irc2ym, joins
an IRC channel and then just shuts up
and listens (Figure 1). If a chat user
mentions one of the keywords (Figure 2)
in the ~/.irc‑keywords file, the bot
launches the ymsend script, which logs
into the Messenger Web API and sends

the eavesdropped text message to a pre-
defined Messenger account (Figure 3).
The Messenger service then notifies the
user, who immediately interrupts work,
turns to the IRC channel, and contrib-
utes expert knowledge to help hapless
newbies find their way around.

Sniffing Messages
Listing 1 [2] derives a YMBot class from
the Bot::BasicBot base class on CPAN
and overloads its said() method, which
the bot calls whenever a user says some-
thing on an IRC channel. Along with a
reference to the object, the bot passes a
hash data structure to the method, con-
taining the username in the who field and
the message text in body.

In this callback method, the bot then
calls the keyword_match() function, de-
fined in line 58, and the function com-
pares the message text with a dictionary
of keywords parsed from
the ~/.​irc2ym‑key‑
words file (Figure
4). The script
parses the en-
tries in the file
and stores
them in the
global @KEY‑
WORD_LIST
array. If one
of the regu-

lar expressions stored in the @KEYWORD_
LIST array fits the bill, line 27 of the
same file triggers the ymsend script in the
same directory. This script accepts the
message text at the command line, logs
in to the Web API, performs a couple of
authorization steps based on the OAuth
protocol, and finally sends the message
text to the user defined in $recipient in
line 11 of Listing 2.

The script needs to jump through a
few authentication hoops first, requiring
the name of the sending Messenger user,
their password, an API key that you
need to retrieve from the Yahoo! Devel-
oper Network [3], and a shared secret
for the application.

OAuth Jungle
The OAuth protocol [4] [5] lets an au-
thenticated user pass a token to an appli-
cation, which then acts on behalf of the

user for a certain period of time. The
beauty of the concept is that

users don’t have to tell the
third-party application

their password directly.
The protocol authenti-
cates just like other on-
line offers at Yahoo’s

login screen, which then
issues the token for the

application to use. The
concept makes a lot of
sense with web applica-
tions, because users get

trained never to enter
their credentials on

third-party
sites, but

Mike Schilli works as a software
engineer with Yahoo! in Sunny-
vale, California. He can be con-
tacted at mschilli@perlmeis‑
ter.com. Mike’s homepage
can be found at
http://​perlmeister.​com.

 Mike Schilli

A listening bot on an IRC channel wakes up when it hears certain keywords and notifies a

defined user via instant messaging. By Mike Schilli

 A listening bot for IRC

Whispers from Beyond

Judith: I decreased the font
size of @T so the whole title

would fit. If it’s too small, just
use "Whispers." Thnx. -rls

Mike:

irc2ym-keywords?? -rls

Judith: The code font is still
difficult to see on the printed
page. Can we get it darker??

-rls

Features
Perl: IRC Monitor

FEBRuary 2011	 Issue 123	 linux-magazine.com | Linuxpromagazine.com	62

only on the original login screen of the
provider. This issue is less evident with
desktop applications like my script,
which need the user’s password anyway
to authenticate at the login site behind
the scenes.

In the case of Y! Messenger, the token
allows the application (i.e., the script) to
send messages to the IM network and re-
ceive responses for one hour. Because

the script runs very rarely and immedi-
ately quits after sending the message,
storing the token wouldn’t offer signifi-
cant advantages. Thus, the script re-au-
thenticates against the Yahoo login page,
passing in a username and password
(hard coded as $user and $password in
ymsend) with every run, then picks up a
new access token and uses it to run the
send command in the web API.

In line 45, the ymsend script logs in the
user as $user and $passwd at the URL
stored in $login_url. Yahoo! sends back
a request token in the body of the re-
sponse.

The script then sends the token and
the API key, with a matching secret key,
secret, to the next URL, $auth_token_
url, which then generates an access
token, oauth_token, and an oauth_token_
secret. The web server response uses

01 �#!/usr/local/bin/perl ‑w

02 �use strict;

03 �use local::lib;

04

�05 �#############################

06 �package YMBot;

07 �#############################

08 �use base qw(Bot::BasicBot);

09 �use FindBin qw($Bin);

10

�11 �my $ymsend = "$Bin/ymsend";

12 �my ($home) = glob "~";

13 �my $KEYWORD_LIST_FILE =

14 � "$home/.irc2ym‑keywords";

15 �my @KEYWORD_LIST = ();

16

�17 �keyword_list_read();

18

�19 �#############################

20 �sub said {

21 �#############################

22 � my ($self, $data) = @_;

23

�24 � if (keyword_match(

25 � $data‑>{body})) {

26

�27 � my $rc = system($ymsend,

28 � "$data‑>{who} said: " .

29 � "'$data‑>{body}'");

30

�31 � warn "$ymsend failed: $!"

32 � if $rc;

33 � }

34

�35 � return $data;

36 �}

37

�38 �#############################

39 �sub keyword_list_read {

40 �#############################

41 � if (!open FILE,

42 � "<$KEYWORD_LIST_FILE") {

43 � warn "$KEYWORD_LIST_FILE ",

44 � "not found";

45 � return;

46 � }

47

�48 � while (<FILE>) {

49 � chomp;

50 � s/#.*//;

51 � next if /^\s*$/;

52 � push @KEYWORD_LIST, $_;

53 � }

54 � close FILE;

55 �}

56

�57 �#############################

58 �sub keyword_match {

59 �#############################

60 � my ($said) = @_;

61

�62 � for

63 � my $regex (@KEYWORD_LIST)

64 � {

65 � return 1

66 � if $said =~ /$regex/i;

67 � }

68 � return 0;

69 �}

70

�71 �#############################

72 �package main;

73 �#############################

74 �use Bot::BasicBot;

75

�76 �my $bot = YMBot‑>new(

77 � server =>

78 � "irc.freenode.com",

79 � channels => ["#ymtest"],

80 � nick => "ymbot",

81 � name => "Relay to Y!M",

82 � charset => "utf‑8",

83 �);

84

�85 �$bot‑>run();

 Listing 1: irc2ym

Figure 1: The ymbot does nothing until

somebody mentions one of the predefined

keywords.

Figure 2: An IRC participant named “hubbel-

quadrat” mentions the “cpan” keyword, and

the eavesdropping bot notifies the user.

Figure 3: The bot has forwarded the message

to the Y! Messenger user.

Judith: I decreased the font
size of @T so the whole title

would fit. If it’s too small, just
use "Whispers." Thnx. -rls

Features
Perl: IRC Monitor

linux-magazine.com | Linuxpromagazine.com	 Issue 123	 FEBRuary 2011 63

the format field=value&field=value … ,
which the script simply stores in a URI
object in line 86 as a made-up query part
of the URL. It then tells the query_form
method to parse the object – this works
because the data are formatted exactly
like a URL using query parameters.

The combination of token and secret
identifies the application as authorized
by the user to use the web service on his
behalf. The script then passes these on
to the Messenger web service using the
$session_url, which starts a new Mes-
senger session and logs in the $user into
the Yahoo! Messenger network. Once the
session has started, other IM users see
the user appear in their buddy lists, and
the script uses the POST method in lines
148-155 to send the message passed in at
the command line to the Messenger user
defined in $recipient (who should be
logged in). This last step involves encod-
ing the request in JSON format as in:

{ message : "the message" }

If the message text also contains quotes,
these non-standard characters must be

encoded correctly. The
qquote function exported
by the Sysadm::Install
CPAN module makes
light work of this task.

Creating the
Auth Token
To create an authentica-
tion token with a secret
for the newly created ap-
plication (i.e., the ymsend
script), the API developer
must click through My
Projects and New Project
(Yahoo! account re-
quired) on the Yahoo! De-
veloper Network [3].
These steps will take you
to the pop-up box shown
in Figure 5. Because this
is not a web application running in a
browser, but a desktop client, you’ll
need to select Or an application using
these APIs: BOSS, Contacts, Mail, … .

In the form that appears, the developer
must enter a short name (e.g., irc2ymes-
senger) and a couple of words of expla-
nation as the description (Figure 6). The
Kind of Application drop-down box must
be set to Client/​Desktop (not Web-
based).

Below Access Scopes, you can then se-
lect This app requires access to private
user data, then in the mass of sub-items

that appears, just select
the Read/​Write option
below the entry for
Yahoo! Messenger (see
Figure 7).

After accepting the
conditions of use, you’ll
be given the keys you
need to put the messen-
ger client together (Figure
8). Cut and paste these
into the strings in lines 15
and 16 of the ymsend
script to set the $api_key
and $secret variables.

In line 10 of the script,
you’ll also need to enter
the password for the Mes-
senger account sending
the message. The user-
name in the example is
zangzongzing. If you
don’t have an account
yet, you can simply press

the Sign Up link to let yahoo.com take
you to the account registration page.

After this, you only need to create a
list of keywords in ~/.irc‑keywords and
launch the irc2ym bot. The bot could
take up to 20 seconds to log in to the
preset channel on a heavily used IRC
server, but then the bot will appear in
the online list as ymbot.

Popular IRC clients include Irssi (for
the command line), or Pidgin, the jack of
all trades, which will display an ongoing
chat once you are logged into the IRC
channel.

If a channel participant uses one of the
predefined keywords, ymsend will wake
up and use the Messenger protocol to
send the message to the predefined (and
hopefully logged in) IM user, $recipi‑
ent, in a dialog window. Now, it's time
to help the newbies! nnn

Figure 4: The list of keywords to which the

IRC bot will react.

Figure 6: The developer must request an authentication token

for a desktop client application.

Figure 7: The application requires read/​write access to Yahoo!

Messenger data.

Figure 8: The ready-made API keys for creating the Y! Mes-

senger client.

Figure 5: Developers need to request a consumer key for a

desktop client application.

[1]	� Yahoo! Messenger IM API:
http://​developer.​yahoo.​com/​
messenger/​guide/​ch02.​html

[2]	� Listings for this article:
http://​www.​linux‑magazine.​com/​
Resources/​Article‑Code

[3]	� Yahoo! Developer Network:
http://​developer.​yahoo.​com/

[4]	� Documentation for authentication
token: http://​developer.​yahoo.​com/​
messenger/​guide/​
chapterintrotomessengersdk.​html

[5]	� OAuth:
http://​en.​wikipedia.​org/​wiki/​Oauth

 Info

Mike:

irc2ym-key-
words?? -rls

Judith:
This is

Figure 5.
(Use the

Fig. 5
caption
above.)-

rls

Judith:
Figure 6
should
be to-

ken-cre-
ate-

form.
-rls

Judith:
These figs

are OK.
-rls

Features
Perl: IRC Monitor

FEBRuary 2011	 Issue 123	 linux-magazine.com | Linuxpromagazine.com	64

001 �#!/usr/local/bin/perl ‑w

002 �use strict;

003 �use LWP::UserAgent;

004 �use Sysadm::Install

005 � qw(qquote);

006 �use URI;

007 �use JSON;

008

�009 �my $user = "zangzongzing";

010 �my $passwd = "*********";

011 �my $recipient =

012 � "mikeschi1li";

013

�014 �my $api_key =

015 � "******************";

016 �my $secret = "*************";

017

�018 �my $login_url =

019 �"https://login.yahoo.com/WSLogin/
V1/get_auth_token";

020 �my $auth_token_url =

021 �"https://api.login.yahoo.com/oauth/
v2/get_token";

022 �my $session_url =

023 �"http://developer.messenger.
yahooapis.com/v1/session";

024 �my $message_url =

025 �"http://developer.messenger.
yahooapis.com/v1/message/
yahoo/$recipient";

026

�027 �my ($msg) = join ' ', @ARGV;

028

�029 �die "usage: $0 message"

030 � unless length $msg;

031

�032 �my $ua =

033 � LWP::UserAgent‑>new();

034

�035 �my $url =

036 � URI‑>new($login_url);

037

�038 �$url‑>query_form(

039 � login => $user,

040 � passwd => $passwd,

041 � oauth_consumer_key =>

042 � $api_key

043 �);

044

�045 �my $resp = $ua‑>get($url);

046

�047 �if ($resp‑>is_error()) {

048 � die

049 � "Can't get request token: ",

050 � $resp‑>message(), " ",

051 � $resp‑>content();

052 �}

053

�054 �my ($request_token) =

055 � ($resp‑>content() =~

056 � /RequestToken=(.*)/);

057

�058 �$url =

059 � URI‑>new($auth_token_url);

060

�061 �$url‑>query_form(

062 � oauth_consumer_key =>

063 � $api_key,

064 � oauth_nonce =>

065 � int(rand 10000000),

066 � oauth_signature =>

067 � "$secret&",

068 � oauth_signature_method =>

069 � "PLAINTEXT",

070 � oauth_timestamp => time(),

071 � oauth_token =>

072 � $request_token,

073 � oauth_version => "1.0"

074 �);

075

�076 �$resp = $ua‑>get($url);

077

�078 �if ($resp‑>is_error()) {

079 � die

080 �"Can't get access token: ",

081 � $resp‑>message(), " ",

082 � $resp‑>content();

083 �}

084

�085 �my $u = URI‑>new();

086 �$u‑>query($resp‑>content());

087 �my %form = $u‑>query_form;

088

�089 �$session_url =

090 � URI‑>new($session_url);

091

�092 �$session_url‑>query_form(

093 � oauth_consumer_key =>

094 � $api_key,

095 � oauth_nonce =>

096 � int(rand 10000000),

097 � oauth_signature =>

098 � "$secret&" .

099 � $form{oauth_token_secret},

100 � oauth_signature_method =>

101 � "PLAINTEXT",

102 � oauth_timestamp => time(),

103 � oauth_token =>

104 � $form{oauth_token},

105 � oauth_version => "1.0"

106 �);

107

�108 �$resp = $ua‑>post(

109 � $session_url,

110 � Content_Type =>

111 � "application/json; " .

112 � "charset=utf‑8",

113 � Content =>

114 � q[

115 � { "presenceState" : 0,

116 � "presenceMessage" : "I'm
alive!"

117 � }]);

118

�119 �if ($resp‑>is_error()) {

120 � die "Can't get session: ",

121 � $resp‑>message(), " ",

122 � $resp‑>content();

123 �}

124

�125 �my $data = from_json(

126 � $resp‑>content());

127

�128 �$message_url =

129 � URI‑>new($message_url);

130

�131 �$message_url‑>query_form(

132 � oauth_consumer_key =>

133 � $api_key,

134 � oauth_nonce =>

135 � int(rand 10000000),

136 � oauth_signature =>

137 � "$secret&" .

138 � $form{oauth_token_secret},

139 � oauth_signature_method =>

140 � "PLAINTEXT",

141 � oauth_timestamp => time(),

142 � oauth_token =>

143 � $form{oauth_token},

144 � oauth_version => "1.0",

145 � sid => $data‑>{sessionId},

146 �);

147

�148 �$resp = $ua‑>post(

149 � $message_url,

150 � Content_Type =>

151 � "application/json; " .

152 � "charset=utf‑8",

153 � Content => '{ "message" : '

154 � . qquote($msg) . ' }'

155 �);

156

�157 �if ($resp‑>is_error()) {

158 � die "Can't send message: ",

159 � $resp‑>message(), " ",

160 � $resp‑>content();

161 �}

 Listing 2: ymsend

Features
Perl: IRC Monitor

linux-magazine.com | Linuxpromagazine.com	 Issue 123	 FEBRuary 2011 65

