| Perl: R Statistics

Analyze historical data with Perl and R

Hindsight

The Perl project’s Git repository contains all the com-

mits since Larry Wall published the first version back
in 1987. The R statistics tool retrieves some surprising
snippets of information from this historic data and
visualizes it for posterity. 8y Michael Schilli

t’s a great feeling to be sitting on a plane with a US$ 200 laptop, but no
Internet connection, and have the complete history of the Perl core in
front of your very eyes. What files did Larry Wall check in back in
19872 Who submitted the first patch? What did it contain?
The git Tog command shown in Figure 1 immediately returns initial re-
sults and takes just a couple of seconds to flash back to the beginnings
of the project, even on an underpowered netbook.
Or, you might be interested in what happened last Mon-
day. All of this information is contained in a 120MB re-
pository, which git updates with git://perl15.git.
perl.org/perl.git effectively as soon as you have
your Internet connection back. Only the uniniti-
ated are surprised that Git points the way for tra-
ditional versioning systems, like Subversion.

Compact Information
This compact bundle of information is in-
teresting not only for programmers want-
ing to follow the development of the
project. State-of-the-art statistics tools
can extract and visualize trends
from it, but even with shell tools,
you can discover that precisely
38,206 commits have occurred
since 1987:

$ git log --oneline | wc -1

38206

The --oneline option reduces the
output format to a single line per
commit. This is not much use for in-

B MIKE SCHILLI

Mike Schilli works as a software engineer with
Yahoo! in Sunnyvale, California. He can be contacted
at mschilli@perlmeister.com. Mike's homepage can
be found at http:/perlmeister.com.

MARCH 2011 ISSUE 124

Perl: R Statistics]

L.lIJ'mr: Arefres Burl Clmlulaburct?

i “rapiscasent” Tor pek and med

parl 1.0 patch 2: Varime portabllivg Flees,

Waithorp Do Fadgln, Boagg Lavadoeer Corbnoen®] aagt i ssagad
pardl 1.0 patch 1: Poriabilily begs asd coe powsibls SIGSEGY

Auithor: Larey Hell CHual1® jpl-drvean . il . neca . g’

H ALTHOR
commit . corionfcerion
L1 AEEINE . i3

H LiksTa

F Lik/ s

commit .ﬁlnﬂhg‘pllﬂlt.:_. 110416676 , Sievalagliplanl & . con
vk ILOZETEEE0 ShaveHmBe Lond L . cow

o 1L PRATC LA S e Pl gaad 1 ooom . 110237 1730 rgard 185 re i el . oee
ICalor Chasgel oy

Color gpm

i 43T

Figure 1: The Perl project’s Git repository contains all the commits
since Larry Wall published the initial version back in 1987.

depth analysis because it omits valuable
information such as modified files, the
precise commit date, the author of a
patch, or the email address of the com-
mitter. In contrast, the call

git log --name-status --date=raw \
--pretty= \
' format:commit, %ae, %at,%ce' \

>perl-git-log.txt

shows more detailed information, for-
matted in an easy-to-parse format, as
shown in Figure 2.

Each commit in this format contains
one or multiple files that Git lists, line-
by-line, below the commit header with a
change flag (M = modified, A = added,

R =removed). Headers start with the text
string commit, ..., so the parser I will be
building later on can easily distinguish

B LISTING 1: log2csv

01 #!/usr/local/bin/perl -w

00 Hbh bbbttt b bt bbb bttt

03 # log2csv - Convert git logs
o4 # to CSV format
05 # Mike Schilli, 2010

06 # (m@perlmeister.com)

OF7 chjpstdpsgigiegbeosbnabipteje e gl
08 use strict;

09 use local::1lib;

10 use Text::CSV;

11

12 my $logfile =

13 "perl-git-log.txt.bz2";

14 my $csvfile =

15 "perl-git-log.csv";

16

17 my $csv = Text::CSV_XS->new(
18 { binary => 1, eol => $/ })

"

19 or die "Cannot use CSV: ",

20 Text::CSV->error_diag();

them from data
lines.

After the com-
mand has completed, the perl-git-log.
txt file has a bunch of interesting data.
Listing 1 [1] picks up the data and con-
verts them into CSV (comma-separated
values) format, which the statistics tool
R supports as input.

Perl as Transformer

Even in this Perl column, I have to turn
to other languages from time to time be-
cause I like using the best tool for the
job at hand. The R language [2] is the
king of the hill in the statistics field [3],
with its speed-optimized data transfor-
mations, a huge selection of graphics li-
braries, and a CPAN-style developer net-
work that goes by the name of CRAN.
Scripts written in R are amazingly com-
pact, although it can take a while for
newcomers to understand the new para-
digms and data structures. In contrast,

22 open my $logfh,

23 "bzip2 -dc $logfile |"

24 or die "$logfile: $!";
">$csvfile"

$1s

25 open my $csvfh,
26 or die "s$csvfile:
27

28 my ($dummy, $author,
29 $time, $committer);
30

31 $csv->print(
32 $csvfh,

33 [

34 "time", "file",
35 "author", "committer"
36]

37)

39 while (<$logfh>) {
40 if (/"commit/) {
41 chomp;

42 ($dummy, $author,

Figure 2: With additional options, git-10g gives more detailed infor-
mation in a parser-friendly format.

Perl is a master of data format conver-
sions, which is why I am using it
(log2csv, Listing 1) as a feeder that con-
verts the Git repository logfiles to the
comma-separated entries shown in Fig-
ure 3.

The script Tog2csv looks through the
perl-git-log.txt.bz?2 logfile, which I
previously compressed from SMB to
0.5MB, line by line. If line 40 of the
script discovers a commit header, it
stores its details such as the patch au-
thor, the Unix timestamp, and the email
address of the executing committer in
three variables declared outside of the
while loop.

If line 45 then discovers a line with a
file change (e.g., M filename), it uses a
regular expression to cut off the change
marker and stores the name of the modi-
fied file in $file. The CPAN Text::CSV
module’s print method in line 47 then
appends and prints out the variables to
perl-git-log.csv.

43 $time,
split /,/, $_;

45} elsif (/"(\w)\s+(.*)/) {
46 my $file = $2;

$committer

4y) =

47 $csv->print(
48 $csvfh,

49 [

50 $time, $file,

51 $author, $committer

52]

53)

54 or die "print failed: "
55 Text::CSV->error_diag();
56}

57 }

58

59 close $logfh

60 or die "$logfile: $!";
61 close $csvfh
62 or die "$csvfile: $!";

Perl: R Statistics

EE30 ,pakchlavel.h,gutechk | sheevelarncld, Lusl 18
.!i.g:ltl:l'lld-a-uﬂ-lrrrmld.
1-dewwax, jpl rans
LB gl e, il - o i
L EFF . g tchlasgl b Srdes] S8 i i a P Lisa LI Jpl —ibiiiesixl o Jil o Saikeh oy
EEAZ, adpsalp b e lifeso ryul corps, leal LE jpl-devvax. |ploass
s, e unlnys . con, T#-I.E-I-'ll

B adpiHakefila

G186, srg.c. lainlabert. Jeall B
FOLEAREY, patchlevel b, inialslaers .

L0, ek o le BH,

F511 paichlavel b, spperibsas . ou . ond mgs com, Jusl[# jpl - desvay . Jpl sass, gy

~durvan. jpl.nma.gee
I8 pl-dewam: . jpl.nsnn.pev

I8 el -dewms: .

Figure 3: The resulting CSV file splits commits into separate files and provides the raw mate-

rial for statistical analysis in R.

This creates a new line in the output
file that includes the author, committer,
and timestamp fields for each modified
file in the repository. The CPAN
Text::CSV (or the
speed-optimized
Text::CSV_XS version)
masks any special
characters that occur
in the line and puts
strings containing
blanks in double
quotes to comply with
the requirements of
the comma-separated
output format.

The call to the constructor in line 17
sets the “binary” flag to allow a wide
range of characters. The eol option de-
fines the line separator in the output for-
mat and is assigned a value of $/ - that
is, the line break character configured
for the active Perl installation.

Taking R for a Test Drive
The 8.5MB CSV file can be parsed and
processed with the R statistics language
and interpreter once you have installed it
following the commands that are de-
scribed in the “Installation” box. The
trial run with R shown in Figure 4 illus-
trates how the tool starts up at the Unix
command line (the interpreter’s name
really is R).

Following some introductory informa-
tion, such as the version number, the in-
terpreter then stops and waits for user
input at the > prompt.

INSTALLATION

Ubuntu installs the R interpreter with the
command

sudo apt-get install r-base-core

and the Perl modules you need to pre-
pare the data are also available as 1ib-
text-csv-perl and libtext-csv-xs-perl.
| hope you enjoy exploring treasure
troves of information [4].

The obligatory print("hello r") calls
R’s print function, which hands the
string passed to it to standard output.
Note that R insists on parentheses for

“R insists on parentheses for
function calls and doesn't
want a semicolon at the end
of a command.”

function calls and doesn’t want a semi-
colon at the end of a command. The
print output consists of a single line,
which R precedes with [1]. This con-
firms the nasty suspicion that arrays, or
“vectors” as they’re called in R-speak,
start at index 1 and not at 0. A command
of source("testprog.r") in the R inter-
preter runs another R program, as I’ll
show you in one of the scripts later in
this article. As you can see in Figure 4, R
can’t find the script specified.
Alternatively, the R distribution in-
cludes an Rscript program you can add
to the header of an executable script, as
in#!/usr/bin/Rscript, to tell the kernel
to call the R interpreter automatically
when the script launches and pass the
program code to it for execution. The q()
function quits an interactive interpreter
session. R then asks whether you want
to dump the current interpreter status to
disk. If yes, R writes the values of all
known variables to the

the recently created CSV file with the git
repository data into R. Note that dots in
function or variable names in R simply
serve to improve readability and don’t
have any deeper syntactical significance.
If successful, the function returns a data
structure of the R-specific type “Data-
frame” that looks like a database table;
the columns provide the internal struc-
ture and each line is a record. The as-
signment of the data structure to the
commits variable is handled by the opera-
tor <-, which R purists prefer to the
functionally identical = to avoid confu-
sion with comparisons
(==).

After storing the com-
plete data from 23 years of
Perl development in the
commits variable, which
takes a couple of seconds,
a call to head(commits) in
Figure 5 shows the first
six rows of data. The cor-
responding tail(commits)
call would produce the last few lines in-
stead. To convert the files column in
the dataframe to a separate vector, the
first command in Figure 6 assigns the ex-
pression commits$file to the files vari-
able, which contains precisely 139,442
file names, as the call to Tength(files)
shows. This vector includes a large num-
ber of duplicate entries, and the Tev-
els() function extracts the unique val-
ues. A call to Tength() shows that 16,429
different files were created, modified, or
deleted since Perl development began.

Frequency Counter

The R table() function accepts a vector
and returns a data structure in which it
assigns a counter to each unique ele-
ment, holding the number of times the
element occurs in the vector:

> data=c("one", "two", "three",

"two", "one", "T.WO")

.RData directory. After "

relaunching, R restores ara
these data so you can
carry on exactly where
you left off.

R the Data

11 “Bulle r~

* gLl

varslon o081 {F08-12-14)

¥ il hiells 77

IomirneEl CLeslprag,.r ¥

camiul dpes FLle "teStgaog.r" i No such Tile o illredtes

I
Save sorkegace Iesge’ [paicls n

Juggler
The read.csv() com-
mand in Figure 5 parses

Figure 4: R on trial: print command; executing the testprog.r
program; exiting R.

R
warsdon F.00. 0 {01314

=ra

| Liopduseri.l aproulBzpen.ery sproctlcpan.arg
pediparldalin . pod aproulBopm.srg sproctlcpan.arg

are neatly struc-
tured if the return
value is not as-

 opamal s - reml oD per] gl R Liggaav)
¥ Pl iamml Ls] ; i
= Fila hor ALz signed to a vari
12 ERIESE perly.tah sefrmBfysh.arg sefran#iysh.arg able. R also has a
12 TEEG parly.y 2efrmifysh,erg refroa®fysh.arg useful help func-
j RS el ED tirefpat -1 aproulBopon.srg sproedBopen.org .
1287172749 ppGEFlac GpToulBopen 4FE aeFesUoen .o il tion; when you

type a question
mark followed by

Figure 5: In R, you can easily parse the .csv file and convert it into a

data structure.

> table(data)
data
one three two

2 1 3

The code snippet above also shows how
R uses the c() function (for “concate-
nate”) to create a vector from individual
elements. The second command line in
Figure 6 puts together everything learned
here in a single line and shows which
files in the repository were changed the
most frequently. To do so, table(files)
classifies the files listed in the commits
and creates a counter for each to accu-
mulate the number of occurrences. The
sort() function then sorts the table()
counters in ascending order and tail,
with an option of n = 20L, returns the
last 20 entries - that is, the entries with
the highest counters. As is the wont of
the interactive R interpreter, the results

[LISTING 2: file-plot.r

01 #!/usr/bin/Rscript

02 #H###H##H#H HHAERHHRHHRHH

03 # file-plot.r
o4 # 2010, Mike Schilli
05 # <m@perlmeister.com>

06 HAfth bttt

07 commits <- read.csv(

08 "perl-git-log.csv")

09 files <- commitss$file

10 data=tail(sort(table(files)),

11 n = 20L)

12 data=rev(data)

13 png(file="files.png")

14 plot(data, type="h",

15 main="File Commits in Perl Git
Repo",

16 xlab="Most modified files",

17 ylab="Number of commits per
file")

a function name,
asin ?tail), it
pulls up neatly
written manual
pages describing the function.

Pictures Say More than
Words

This short introduction to R should suf-
fice to start plotting some interesting
charts that shed light on the activities
within the Perl repository. Listing 2 cre-
ates a PNG image file from the data
structure with the 20 most frequently
modified files. Line 13 prepares the out-
put of the following plot function, as
png(file="files.png"), which redirects
all drawing activities to the file files.
png. Without this line, R would pop up a
new window and display the chart there.
The plot function call from the standard
R repertoire in lines 14-17 illustrates that
R doesn’t need a confusingly long list of

Perl: R Statistics]

parameters to paint a professional-look-
ing graph. Axis labels, maximum and
minimum values, you name it - every-
thing has meaningful defaults. But this
doesn’t mean that R is inflexible. On the
contrary, you can modify every single
detail of a chart from the shape, position
and number of axes, number of values in
the scale, colors, fonts, and so on to
match your own taste.

R functions expect parameters as
comma-separated par=value pairs. Fig-
ure 7 displays what the plot of the data-
frame data in a histogram format looks
like.

The Ravages of Time

To display the activity from the past 23
years, Listing 3 takes the commits$time
timestamp column, which uses the Unix
seconds format, and adds a new column,
commits$year, which displays the corre-
sponding four-digit year, to the data-
frame. For this to happen, the internal R
function as.P0SIX1t() converts the Unix
timestamp, by reference to the date
1970-01-01, to the native POSIX1t (POSIX
“local time”) date type.

The format() function then uses the
"%Y" placeholder to extract the four-digit
year from the date, which results in a
new column with 140,000 year numbers,

Fllescdommi 1 58Tk
F filen spdafisd meal ofton
3 Emjilmariliahipillienll, n . I
FLlEzn
Chismges i Ron .o [(T "
Fpic: | T4 b
pe=dfparl fenc. Poriing Halntainare . pl pe=idpa il La pmad
;: Hi4 -E]
Ppac FERCSED o util.c
EF =T b=
ankad. fec rpr_cil.c ashad. h
L 54 1020
Condf igiie perl.h Rapki 0
Lo 1143 1145
parl.c ap-e predis_h
121 12500 13k
CTON MANIFEST
1554 b o
F difFarent filem
& isgelhC lewnlins Ul Resi)
il
Fototnl Fllas mocdified b
& lar 1||({ ;II'II
M11 1aseedz
P diffarent. cosmii Limes
3 largthiishls Leomsmi EaStime) i
ﬁ i
k]

Figure 6: First steps with R and the CSV data imported from the Perl Git repository log.

Mike: I changed the first sentence of this section (pls
refer to your original) because it called out a Fig 10
(before Fig 9) that didn't appear to agree with the figure
supplied, and it talked about the “10 hardest working

authors” rather than the five, as later. OK as set?? -rls
\

Perl: R Statistics

amount of work

File oreimits in Pl 08 fepa off the user’s plate.

¥
A0
,

A Detailed
Picture
. . g N | Tells Even
8 : : {1 More
;_ Line 227? I think i E |’ | The R code in List-
5 this is referring to 1 £ l,l'l ' ing 4 grabs from
iE Listing 3, not L2. 2 II,.“' L \ the Perl repository
E 1ls i . the hardest work-
~ 3 ll."'f _Mlke: ing Perl authors in
-4 " -:"F Line 237? the last 23 years,
N -rls along with their

activities. Because
Git didn’t exist in

IGAT MGG IESC IHE 1WA R o
L]

Figure 8: Number of files modified per yea

1987, the data
were imported ret-
rospectively from
the velsioning system used before its in-
troduction. The R code that creates the
multigrdph diagram first looks for the
hardest working authors
and only remembers those
who have produced more
than 5,000 file commits
otal. The subset () function
Iter out all other commits

Figure 7: The nfost frequently modified files as a chart.

which the £able() function then con-
verts into/a data structure that contains a
counter for each year.

The WMot () function called
in line 14 is smart enough to
convert the data structure
into the chart shown in Fig-
ure 8 without further instruc-
tions from the developer.

pears when you type ?plot in the R in-
terpreter. This page also tells you that
plot() doesn’t just process table() out-

The man pages for the
lattice graphics library

Listing 3 simply specifies the
axis labels "Year" and "Files
Modified".

If you look closely, you will
notice that the lines in the
graph do not cross through
the data point circles, but
fade out shortly before and
restart shortly after them.

This feature comes courtesy of the
type="b" option; if you prefer uninter-
rupted lines, use "o" instead. For more
options, check out the man page that ap-

B LISTING 3: files-per-year.r

01 #!/usr/bin/Rscript

reveals useful details of
the amazing number of
parameters the xyplot()
function supports.

put but can also work with two vectors
for the x and y values of the graph. R
generally tries to guess what the user
means and very often takes a huge

in line 14 by calling
subset(au,au > 5000).

The au table-type vari-
able carries all authors of all
commits. The condition
passed in as the second pa-
rameter filters out any en-
tries that don’t match. One
of R’s specialties is vector

operations [5], such as au > 5000, which
are short and to the point and also capa-
ble of performing mass operations in a
highly efficient way.

Line 27 calls table() with two param-

14 nopyn

eters, commits$author and commits$year,
and thus creates a data structure that as-

signs all combinations of author and

00 HHHH At

15)

03 # files-per-year.r

o4 # 2010, Mike Schilli

05 # <m@perlmeister.com>

06 ki i it

16
17 files.per.year <-
18 table(commits$year)

19

07 commits <- read.csv(

08 "perl-git-log.csv") 21

09
10 commitss$year <- format(
11 as.POSIX1t(

12 commits$time,

13 origin="1970-01-01"),

year to a counter. For ease of plotting,

line 30 uses R utility function as.data.
frame() to create a dataframe from the
table, and line 32 then names its previ-

20 png(file=
"files-per-year.png")
22 plot(files.per.year,

23 xlab="Year",

24 ylab="Files Modified",

¥ Ladl (T les by ewibogeark

MO rgarclssasrerbgenl | .o F0E 106GH

Wb Fgarcleisre:Bsall . con 000 o

author gamr Tilan

fEsarBogsin.org 2000 [}
i].:'nl.l:.:l.i.u.Fl. g 1]

ni= Ld_org 2018 147
rolkl Ak, 1 ona 2000 L}

25 type = "b")

Figure 9: The tail of the dataframe shortly
before plotting.

The more complex chart is

2 not plotted by plot(), but by

the xyplot() function from
| the 1attice graphics library,

[]

Ery
e
T
-
L
=

[=

L

Ll s |

i w1 i ¥ i
F P e

which was included previ-
ously in line 9 with the com-
mand Tibrary("lattice").
Incidentally, this also imports
the man pages for the library,
. which is included with the R
f f distribution. Typing ?xyplot
£ reveals hugely useful details
of the amazing number of pa-
rameters this function sup-
ports.

The most important param-
eter is the first, which takes

T

Tt

Figure 10: Committers with more than 5,000 file commits

and their most active years.

ously unnamed columns with a some-
what surprising left-hand-side call to
names () on the dataframe, which gets
the column names "author", "year", and
"files" assigned from the right side of
the assignment.

At this point in time, the variable
files.by.auth.year still contains the
data of all authors, but line 36 extracts
the subset of the five hardest working
authors previously identified by au be-
fore then assigning the results back to
files.by.auth.year. Figure 9 shows the
tail of the intermediate results.

[LISTING 4: author-by-year.r

01 #!/usr/bin/Rscript

02 T
03 # author-by-year.r

o4 # Lattice multivariate data
05 # visualization

06 # 2010, Mike Schilli

07 #

<m@perlmeister.com>

08 ##

TR R TR R RN RN NIRRT R TR TR TR TR

09 library("lattice")

10

11 commits <- read.csv(

12 "perl-git-log.csv")
13

14 commits$year <- format(

15 as.POSIX1t(

16 commits$time,
17 origin="1970-01-01"),
18 nopyn

the form
y~x|g

where x and y are vectors with the x and
y values, respectively, and g defines the
various groups for which you want a
separate graph. In this case, all three
variables reference different columns of
the files.by.auth.year dataframe,
which is passed in as the data parameter
to xyplot (). The layout of the graph,
which is defined with c(1,5) to the Tay-
out parameter, lets R draw five diagrams
per display with one each per row.
Because the year labels are closely
packed at the bottom end of the chart

20 # Authors with more than
21 # 5000 # file commits

22 au=table(commits$author)

23 au = sort(subset(au,

24 au > 5000))
25

26 files.by.auth.year =

27 table(commits$author,
28 commits$year)
29 files.by.auth.year =

30 as.data. frame(

31 files.by.auth.year)

32 names(files.by.auth.year) =

33 c("author", "year",
34 "files")
35

36 files.by.auth.year = subset(
37 files.by.auth.year,

38 files.by.auth.year$author

Perl: R Statistics

and would interfere with each other be-
cause of their length, the scales parame-
ter rotates them 45 degrees in line 49.
The type=1 parameter defines the line
type for the charts, and x1ab and ylab
specify the axis legends.

Each panel in Figure 10 represents one
of the five hardest working authors. The
graphs show the number of files modi-
fied by the committer each year, clearly
revealing the active development times
of legendary Perl authors, such as Guru-
samy Sarathy, who have since retired
from core development. mmm

Jj INFO

[1] Listings for this article:
http//www.linux-magazine.com/
Resources/Article-Code

[2] The R Project for Statistical Comput-
ing: http://www.r-project.org/

[3] Jones, Owen, Robert Maillardet, and
Andrew Robinson. Introduction to
Scientific Programming and Simula-
tion Using R. Chapman and Hall/
CRC, 2009

[4] Talk: Fun with numbers: R and Perl
(and IMDB data): http./blog.moertel.
comyarticles/2007/06/21/talk-fun-with
-numbers-r-and-perl-and-imdb-data

[5] Sarkar, Deepayan. Lattice: Multivari-
ate Data Visualization with R, Use R!
series. Springer, 2008

39 %in% names(au)

40)

41

42 png(file=

43 "authors-by-year.png")
44 xyplot(

45 files ~ year | author,

46 data = files.by.auth.year,
u7 layout = c(1, 5),

48 scales =

49 list(x = list(rot = 45)),
50 type = "1",

51 xlab = "Year",

52 ylab = "File Commits",

83 title =
54 "Authors with > 5000 Commits"

55)

