
Copyr igh t © 1$85

S P E C I A L
I S S U E E

19 8 5

A r e p r i n t i s s u e o « f m a t e r i a l f r o m t h e J o u r n a l s o f P P C

I N S I D E

PPC
PO Box *J!>7J
Long beach, CA 9080J-0579

USA

PPC - A Unique User's Group

Enlargement Timing

HP-16C Emulator

Telephone Number-Letter Combinations

MCODE for Beginners

Keying HP-41 Synthetic Instructions

HP-41C Combined HEX/Decimal Byte Table

PPC ROM User's Manual Foreword

PPC ROM Routines in HEX Table Order

The HP-41 Translator Pac for the HP-71

PAM for the HP-75

Biorhythms

PPC Journal Covers: September/October 1984 (CO),
September/October 1984 (CA), May 1984 (CA), and
January 1985

To obta in your own copy of th is specia l issue, send e i ther a Sel f -
Addressed, Stamped (with 3 ounces of postage) envelope (preferred), or a
$1 b i l l , t o :

See new address above.
Te l e p h o n e (2 1 3) 4 9 8 - 2 5 5 4

Edi tor 2

Olli Pera 4

Gary Friedman 4

Carter Buck 6

Skwi d 6

Edi tor 8

Kei th Jaret t 9

ROM Committee 10

ROM Committee 11

William Wickes 12

Brian Walsh 15

E.V.D. Wateren 15

16

B u l k c o p i e s o f t h i s s p e c i a l i s s u e a r e a v a i l a b l e t o c h a p t e r s ,
universities, and other interested groups. Contact PPC for details.

PPC, the Personal Programming Center, is a California non-profit benefit corporation dedi
cated to advancing the applications art of personal- computing* PPC is the oldest personal

POB 9599 Fountain Valley, California 92728-9599 USA, Telephone (714) 754-6226.

PPC - A UNIQUE USERS GROUP

The Personal Programming Center, PPC, is a California non-profit
public benefit corporation, dedicated to the advancement of truly
personal computing. It is the world's oldest personal computing
group, formed in June of 1974 with the advent of the HP-65. To
PPC 'members', a personal computer is one that can be carried with
him at all times, by choice. This does not include the so-called
'transportable' computers, but we are always open to reviews and
articles on machines that PPC 'members' find of interest.

PPC 'members' have been, and continue to be, instrumental in the
advancement of state-of-the-art machines. The majori ty of PPC
articles are in support of Hewlett-Packard portable/personal com
puters and computational devices. We support the 10 series (slim
line) programmable calculators, the 41 series (C/CV/CX), the 70
ser ies (75C/D, 71B), the 80 ser ies (85/86/87), and occasional
inputs on the HP-110 (The Portable). PPC can help you to get
every ounce of performance out of all of these machines.

What is PPC?

■ PPC is an educat iona l in fo rmat ion gather ing and d is
seminating organization that encourages active partici
pation by its 'members'.

t PPC serves as a focal point for personal computer users
to share their knowledge, expert ise, and experiences.
This is done in the spirit that the only fair compensa
tion for a priceless idea is another priceless idea. We
respect and encourage commercial interests.

• PPC has a unique editor ial pol icy. Member's inputs are
the main source of information, and as such, we encour
age 'members' to submit their articles and programs in
as near to a publication ready format as possible (see
'Submiss ions ' , be low) . When necessary, programs or
articles may be retyped for reasons of proper reproduc
tion, but the content is as submitted by the 'member'.
We do reserve the right to correct spelling and gramma
tical errors, and generally remove statements such as
'enclosed is my check for renewal ' in let ters for the
Feedback sect ion. However, i f requested, let ters wi l l
be reproduced as submitted (depending on suitability and
available space).

PPC is not in business as a hardware or software vendor,
but we occasionally make available special i tems that
are not available through other sources. An example of
this is the ERAMCO MLDL box. Due to customs problems
and the need to commit to a quantity of boxes for pur
chase, PPC stepped in to allow this item (manufactured
in the Netherlands) to be available to 'members' in the
U.S. Another example is the famous PPC ROM project,
which could not have been accomplished as a strictly
commercial endeavor. The volunteer effort that was put
in to making this ROM is what makes this module truly
unique in history.

• PPC expends resources to maintain active bi-directional
communication with manufacturers of the various products
i t suppor ts .

• One of PPC's goals is to serve the average, non-program
mer personal computer user. To this end, we publish
tutorials and beginner's programs as appropriate.

• PPC con t r ibu tes to s ta te -o f - the -a r t ac t i v i t i es and cu l
t i va tes ac t i v i t i es t ha t i nc rease the qua l i t y and de
crease the cost of hardware, firmware, and software,
with the end goal of improvements to meet the user's
needs.

t PPC is able to work directly with many manufacturers and
dealers to provide you with discounts on items purchased
for your portable systems. Announcements of these spe
cial buys are made in the Journal and on the PPC Phone
B u l l e t i n .

• PPC, being at the cutt ing edge of technology, is spon
soring the introduction of Amateur Radio classes and
r e l a t e d i n f o r m a t i o n f o r t h e p u r p o s e o f t r a n s m i t t i n g
computer data over the a i rwaves (known as 'packet
rad io ') . Th is is ak in to modem t ransmiss ion, wi thout
the attendant telephone charges.

t PPC encourages local chapters to provide an information
network for rapid col lect ion and disseminat ion of the
latest d iscover ies, announcements, and 'member ' and
community accomplishments.

If you are the type of a person who desires to explore the capa
bilities of your personal computer, and find out new ways to pack
more punch in your programs, then PPC is for you! People from all
backgrounds, from all over the world, have found the many ways
that PPC can ass is t them in the i r quest for knowledge. PPC
strives to keep a balance, so that beginners can have their ques
tions answered, intermediates can continue up the learning curve,

and experts can share their knowledge at the cutt ing edge of
technology.

Correspondence - When corresponding with PPC, or with other 'mem
bers', you should always use your 'member' number. Individual
written responses are provided on a time available basis. To help
facilitate a response, enclose a SASE or postcard with your in
quiry. The PPC Workcenter phone number is (714) 754-6226 for
d i rec t conversat ion regard ing cur rent i ssues re la t ing to PPC.
Direct al l mai l to:

PPC
P.O. Box 9599

Fountain Valley, CA 92728-9599 USA

Membership - The rates for a 'membership' in PPC comprise two
types. First, there is a one t ime 'new-member' processing fee.
This fee is charged to cover init ial entry costs, including items
such as the Member Handbook. The second fee is the 'yearly' fee
paid by the 'member' that entitles him or her to 12 issues of the
PPC Journal. Since the PPC Journal is published based on material
received by the 'members', there may be times when a month goes by
without enough material for publication (or sometimes when there
is enough to publish every two weeks!) Although we try to keep to
a 'once per month' publication schedule, the 'yearly' rate is your
fee to get 12 issues of the PPC Journal. All new 'memberships'
and renewals received within two weeks of mailing of a Journal
wi l l be sent that cur rent Journa l , and 'membersh ip ' w i l l s tar t
f rom that date. Those rece ived af ter that t ime wi l l s tar t w i th
the next Journal published. The current rates can be found in the
attached application form.

Act iv i t ies - Any act iv i ty that helps 'members' to better under- ,
stand their personal computer is suitable for PPC. Local chapter
meetings, community meetings for classes, and regional conferences
are all common PPC activities.

Submissions - Submittals by 'members' of programs and/or articles
for publication are actively encouraged. To assist us in making
the bes t qua l i t y reproduc t ion o f your mater ia l , p lease fo l low
these guidelines:

All Journal submissions should be typed 5 1/2" wide, using a
dark ribbon. For those of you using a dot-matrix printer, do
not use compressed mode, and please do use bold mode. It Ts
a I so extremely helpful if you can suEmit programs (and arti
cles, if possible) on magnetic media (returned upon request).
This wi l l enable us to provide more legib le l is t ings, bar
code, etc., as well as making it possible to download to the
Remote Bulletin Board System.

Product Reviews - PPC would like the opportunity to review your
hardware or software product. The Editor and/or reviewer reserve
the right to present information on the product from the user's
viewpoint. Contact the Editor at PPC for information on submit
ting products for review. All items returned upon request.

PPC Workcenter - The area used to house PPC quarters and where the
Journals are produced, published, stuffed, etc., is called the PPC
Workcenter. Meet ing are general ly held every Fr iday evening,
starting about 6 P.M., and ending in the wee hours of the morning.
Since meetings may occasionally not be held on holiday weekends,
it is best to contact the PPC Workcenter first before visiting.

PPC Hotline - This telephone (714) 549-7674 provides the latest
in format ion re la t ing to persona l comput ing in a one to three
minute message. Product announcements, bug reports, PPC news, and
For Sale/Wanted ads are available for 'members' world wide. Mem
bers can leave a message at the end of the recording, if they so
desire.

PPC Chapters - Local groups of users may form a PPC Chapter. The
primary function of a Chapter is to form a communications network
to aid in the information transfer process. A PPC Chapter list is
enclosed with this issue.

Member Handbook - The PPC Member Handbook is a source of informa-
tion on and for the 'members' of PPC. This reference will allow
you to locate others in your area who share the same interests in
Personal Computing.

HP-67/97 Library - PPC is the official custodian of the Hewlett-
Packard User 's L ibrary. A l l inqui r ies should be addressed to :
67/97 Library, c/o PPC, P.O. Box 9599, Fountain Valley, CA, 92728-
9599, USA.

PPC Publications

PPC Journal - The PPC Journal is the main publication of PPC.
Previously, we published the PPC Computer Journal (abbreviated
CO), and the PPC Calculator Journal (abbreviated CA). These two
Journals were merged in 1985 because of the increasing overlap of
the two machines caused by the advent of HP-IL and associated
peripherals. The total number of pages per year was formerly 320
for CA, and 192 for CO. The total for the current PPC Journal is
targeted at 576, or 64 pages more per year than the combined total
of the previous Journals.

- ■
PPC SPECIAL ISSUE E

■'*mm-r

Sample Issue - This special sample issue representing a cross-
sectlon of the PPC Journal articles may be requested by any inter
ested person by sending a Self-Addressed, Stamped Envelope (9" x
12") with 3 ounces of postage (U.S. First Class) attached, or by
sending a $1 bill (please, no checks). The SASE is preferred, and
no correspondence is necessary. For chapters, universit ies, and
other large groups, contact PPC for quantity shipments.

NOMAS Listings - PPC has selected listings of the HP-41 system,
associated ROMs (HP-IL, Timer, Extended Functions, etc.), and HP-
75 system l ist ings avai lable on a NOt MAnufacturer Supported
basis. These listings have been made available to the user com
munity with the understanding that those receiving the l ist ings
not contact the manufacturer regarding them. Contact PPC for
current pr ices and avai labi l i ty.

Remote Bulletin Board System - PPC is in the process of imple-
menting a Remote Bulletin Board System to allow users to share
software, send in articles and programs, and keep up to date on
other PPC activities. This system is based on a heavily modified
Xerox 820-11 CP/M computer with a hard disk, and can normally be
accessed dur ing non-work hours (before 8 A.M., af ter 6 P.M.,
Pac ific t ime) .

Copyright - Copyr ights remain with the author of any mater ial
published by PPC. Material submitted to PPC does not constitute
or imply exclusive use by PPC of the material. PPC reserves the
r ight to republ ish submit ted mater ial in other than the regular
Journals (i.e., Special Issues, Conference Proceedings, etc.).

Back Issues - Journals are continuously available in printed and/
or microfiche form. A back issue table is included in mater ial
sent to new 'members', and is updated periodically.

PPC Journal 'Quotes' - Material may be quoted and described by
authors, editors, or publications under the following conditions:

a) Reference source as PPC Journal V N P .
b) Provide PPC and author a copy of maTeFial as reproduced.

Editor Exchange - Related computing publications may request to be
placed on the Editors Exchange mail ing l ist on a reciprocating
basis.

Trademark - PPC is a registered trademark, and as such, any un-
authorized or unlawful use will be considered trademark infringe
ment and prosecuted to the full extent that the law allows.

WHY A SPECIAL ISSUE?
The intent of this issue is to introduce users of personal compu
ters to the unique advantages that PPC can offer them. The arti
cles in this issue have been culled from the previous years issues
of the PPC Calculator Journal, the PPC Computer Journal, and the
newly combined PPC Journal. You'll find that this issue contains:

Page 1 - The cover of the Special Issue. The cover of each PPC
Journal is always page 1.
Pages 2-3 - An introduction to both PPC and to the Special Issue
itself. What you're reading right now!

Page 4 - For all of you darkroom photography buffs, here's an
example of using your HP-41 to make some of the tedious calcula-
Pa
example of using your ..
t i ons eas ie r. O l l i Pera (7644) has a qu ick p rogram tha t w i l l
allow you to adjust yourenlargement timing parameters for making
blow-ups from your favorite negatives. From PPC Calculator Jour
nal V11N5P5.

Page 4 - Gary Friedman (6522) has written a nice program for the
HP-41 using the HP-IL Development module (or the Advantage ROM) to
turn the HP-41 into an HP-16C (at least the most used functions).
To aid in entering programs into your HP-41, most published pro
grams are printed with barcode, as wel l . From PPC Calculator
Journal V11N1P25.

Page 9 - The HP-41 Hex Table shows the entire HP-41 instruction
set in both decimal and hexadecimal formats. It also shows how
each byte is represented both in the display and by the Thermal
P r i n t e r / P l o t t e r.

Page 10 - The Foreword of the PPC ROM manual is reproduced to give
potential 'members' a feel for what is truly the greatest creation
by a group of volunteer programmers in the history of personal
computing. The PPC ROM is an 8K custom manufactured ROM contain
ing an extremely wide variety of programs to enhance the use of
your HP-41.

Page 11 - A complete list of all of the routines contained in the
PPC ROM gives the user a feel for the immensity and power this ROM
makes available.

Page 12 - The HP-41 Translator Pac for the HP-71 is introduced and
discussed by its creator, Dr. William Wickes, of Hewlett-Packard's
Por tab le Computer Div is ion. Th is module a l lows the HP-71 to
become a super-charged version of the HP-41, giving HP-71 users
access to the huge established base of software already created
for the HP-41. From PPC Journal V12N1P21.

Page 15 - Personal Applications Manager (PAM) has been written for
the HP-75 computer by Brian Walsh (6951). This utility program is
a 'shell' for the normal operating system that enables you to do
your 'CATALL', 'PLIST', and mass storage manipulations easier than
ever before. From PPC Computer Journal V3N4P31.

Page 15 - Another nice Biorhythm program for the HP-41 is demon
strated by Meindert Kuipers (7612) and Er ic van der Wateren
(8146). This program, which makes use of the functions in the
Timer and Extended Functions modules (or an HP-41CX), is one of
the shortest, quickest biorhythm programs ever. From PPC Calcula
tor Journal V11N3P10.

Page 16 - Examples of the PPC Journal covers, showing some of the
many programs and applications that are available to PPC 'members'
in the PPC Journal.

Articles that have been in PPC Journals in recent months include:

• A complete descr ipt ion of the HP-75 I /O ROM by Raan
Young (author of the ROM), including several undocu
mented commands included in the ROM. (CO V3N4P7)

• A complete telephone answering system, including Touch-
tone decoding, speech synthesis, and phone logging, all
bui l t around an HP-41 wi th an HP-IL inter face. Gary
Friedman has done it again! (CA V11N6P23 X V11N7P6)

• 1001 (binary) methods of avoiding program decompilation,
described by Roger Hi l l (4940). This art icle, original
ly presented at the Philadelphia PPC Conference, lets
you keep programs that have been compiled from decom
pil ing after being read in from mass storage devices,
preventing longer waits while XEQ's and GTO's recompile.
(CA V11N7P20)

• Bu tcher ' s B lock , a (semi) regu la r co lumn by Dav id E .
White (5353) (The Butcher) . This feature delves into
some of the hardware aspects of the HP systems, and
shows how you can make modifications and improvements to
your own devices. Also included are product reviews of
new hardware, (various issues)

• Greatest d iv isor for both in tegers and non- in tegers, by
Bob Hall (1859). Bob has a great interest in the power
of the HP-15C, and is continually coming up with new
programs for 10-series machines. (V12N1P15)

and, of course, much, much more, in every issue. Regular features
include:

Page 6 - Ever wonder what your phone number would be in alpha
characters? Want to be able to have your friends reach you by
calling "WILDGUY"? This program accepts your (7 digit) telephone
number as input, and will print out or display all of the possible
combinat ions of le t ters that your phone number wi l l p roduce.
Wr i t ten by Car te r Buck (4783) , f rom PPC Ca lcu la to r Journa l
V11N2P13.
Page 6 - SKWID is a pseudonym given to an otherwise anonymous
'member' to protect his (not so) innocence. Here, SKWID gives a
brief introduction to assembly language programming with the HP-41
(also known as MCODE programming). The SKWID articles that appear
periodically in the PPC Journal cover subjects ranging from MCODE
programming, to HP-IL programming, to tutorials on the operation
of the HP-41. This one is from PPC Calculator Journal V11N5P6.

Page 8 - This is a brief description of the simplest method of
getting started in Synthetic Programming (without any other mod
ules needed). Using this technique, you can immediately assign
the "Byte Grabber" on your HP-41C/CV/CX, and get started in the
world of Synthetic Programming. Also included are several exam
ples of the use of the Byte Grabber for creating Synthetic in
s t ruc t ions.

• HP Status - a l is t o f product del ivery t imes.

• Feedback - letters from the user community, with ques
t i ons , t i ps , e t c .

• Bits & Pieces - short notes to help you get the most out
of your machines.

• Trading Post - a no-cost way for PPC 'members' to adver
tise their products to PPC Journal readers. Limited to
twice-per-year insert ion. The Editor reserves the r ight
to present material from the users viewpoint.

• NOP - an errors column.

t Chapter Notes - information provided by PPC Chapters.

So there you have it! Take a look through this issue, and after
you're through, you' l l probably be another convert to ' the PPC
way'. We look forward to having you join us, and hope that you
get as much out of PPC as you can. We also look forward to your
contributions to further the spread of information - so go to it!

PPC SPECIAL ISSUE E

c ENLARGEMENT TIMING
)

The main purpose of this program is to calculate new exposure
times for black & white prints after the magnification ratio is
changed. The program prompts for the size, aperture, and exposure
time of your old print, and the desired size and aperture for the
new print, as well as how many F-stops darker or lighter you want
the new print to be. Then it calculates the correct exposure
time. The size of the print can be given in several ways:

1: If it is positive, it is a reading from the scale on the
vertical rod on your enlarger.

2: If it is negative, it is the width of the image of the
negative mask on your paper.

3: If it is zero, then the program assumes that the old print is
your normal contact sheet and sets the values accordingly.

01*LBL "ENL"
02 FIX 1
03*LBL 00
04 CLST
05 "OLD H"
06 PROMPT
07 X=0?
08 GTO 12
09 X>0?
10 XEQ 11
11 X<0?
12 XEQ 10
13 1
14 't
is "OLD F"
16 PROMPT
17 *
18 X/2
19 "OLD T"
20 PROMPT

21 /
22*LBL 01
23 "NEW H"
24 PROMPT
25 X>0?
26 XEQ 11
27 X<0?
28 XEQ 10
29 1
30 +
31 "NEW F"
32 PROMPT
33 *
34 X/2
35 /
36 1/X
37 "CORR"
38 2
39 CF 22
40 PROMPT

41 FC? 22
42 0
43 Y7X
44 *
45 STOP
46 GTO 00
47*LBL 10
48 -2.3
49 /
50 RTN
51*LBL 11
52 .1914
53 *
54 1.362
55 +
56 RTN
57*LBL 12
58 268.5
59 GTO 01
60 END

Program lines from line 47 (LBL 10) ahead depend on the enlarger.
The negative constant on line 48 is the width of your negative
mask (I have got a 23*36 mm mask => -2.3 cm). If your input to
the "H"-prompt is negative then it gets divided by this constant
and the result is magnification ratio. The subroutine (LBL 11)
calculates the magnification from the reading from the rod. I
used the curve fit program to find out this equation. The result
was straight line m = .1914*h+1.362 (R = 0.9998) in my enlarger
(AXOMAT 4). The constant in line 58 can be found in X-register at
"NEW H"-prompt when you run the program and give the normal values
you use for contact sheet at the "OLD"-prompts (I use H=36 cm,
F=5.6, T=10s, these give the 268.5 when "NEW H"-prompt is
cleared).
The equation used is: T2 = 2C*T1*(. ;M2+l)*F2i.2

Ml+1 *F1'

T = time, M = magnification ratio, F = aperture, C = correction in
F-stops.
It is based on the equation tc = t*(m+l)2 found in:

A. Hawkins, D. Avon: Photography, the guide to technique.

Examples: I want to make a 12 cm * 18 cm picture (so I adjust the
enlarger head and read the value "21" from the rod). F = 8 and I
want to make it a half F-stop darker than in the contact sheet:

Display: I do:

0.00 XEQ "ENL"
OLD H (R/S) -.contact sheet
NEW H 21(R/S) ;from rod scale
NEW F 8(R/S)
CORR 2{1/X)(R/S) ;or .5(R/S)
13.7 ;answer

I make the print and it is perfect (this is an example, not real
l i fe) . Le t ' s make a 30 cm *
projected on to the floor):

Display:

cm picture from it (must be

I do:

13.7 (R/S)
OLD H 21(R/S)
OLD F 8(R/S)
OLD T 13.7(R/S)
NEW H -30(R/S) ;width of picture
NEW F 8(R/S)
CORR (R/S)
66.3 janswer

REGISTERS! 19
toy 1 cis)

in* s cza-za?

IQW B QO-37?

tOlf 7 C37-<*>

iO* B U5-SZJ

ROW 3 C52-5fl>

iDM 10 C5B-6DJ

Olli Pera (7644)
Hallituskatu 31 A 17
SF-90100 OULU 10
FINLAND

ifR/Sl

c HP-16C EMULATOR

Those of us who program using assembly language had to invest
a small amount in an HP-16C or (GaAsP!) a T.I. LCD Programmer just
to help calculate absolute branching addresses, work with signed
representation, or evaluate carry and overflow flag status.

This program, using the capabilities of the HP-IL Development
ROM and XF/M, emulates the basic functions of the HP-16C. It
offers var iable word length of 0-32 bi ts, s igned and unsigned
notation, carry and overflow flags (indicated by flag annunciators
0 and 4), and quick conversion between hexadecimal, decimal,
octal, and binary (up to 10 bits). This, combined with the Devel
opment ROM's ROT, AND, OR, XOR, and NOT functions let me use my 41
for just about everything I bought the 16C for.

For the uninitiated, the IL Development ROM offers the essen
t ia l b i t manipulat ion and Hex/Oct/Bin I /O capabi l i ty that make
this program possible. In addi t ion, i t offers low level IL com
mands, a scope mode so one can monitor the messages circling the
loop, and a buffer that can transfer anything anywhere without
fearof normal izat ion. In shor t , th is wel l des igned ROM offers
something for every PPC member to play with.

NOTE: Despi te th is ar t ic le 's t i t le , i t i s not to imply that
this program will replace the 16C. It merely emulates the 16C's
behavior in simple addition and subtraction, no doubt the 16C's
most frequently used functions.

INSTRUCTIONS

1) XEQ "16C". Display comes up in 8 bit, unsigned Hex display
mode. 7 keys now have new global assignments: ENTER?, +, and- are replaced by similar labels; RDN, SIN, COS, and TAN
implement decimal, hex, octal, and binary respectively.

2) Key in problems as you normally would using RPN. For exam
ple, to add 5E and 20 (both hex), press 5E, ENTER/, 20, +.
The result, 7E, is displayed. To see the decimal equivalent
hit "DEC" (RDN) and get 126. Octal is obtained by pressing
"OCT" (COS), and binary can be seen (if the number is 10
digits or less) by pressing "BIN" (TAN).

3) To implement 2's complement notation, XEQ c (shift SQRT).
Flag 2 annunciator is set indicating 2's complement. XEQ c
again will toggle back to unsigned representation. Example:

DO SEE FLAGS COMMENTS

XEQ "DEC" D 126
165 ENTER/ D 165
3 2 + D 1 9 7
X E Q c D - 9 1

224 D

I Automatical ly checks display
sign.

-123 0,2 Flag0 set, indicat ing carry.

4) To change word size, XEQ d (shift LOG). Program will prompt
for "WORD SIZE?" (friendly, huh?). Enter word size (up to 31
bits) in decimal and R/S. EXAMPLE: (continued from above)

XEQ d
16 R/S

D - 1 2 3 0
WORD SIZE?
D 1 3 3 2

,2

MSB is now 8 bits to the left
and i s = 0 , r esu l t i ng i n a
pos i t i ve in te rpre ta t ion .

PPC SPECIAL ISSUE E

5) To exit and restore "normal" format, XEQ e. The newly de
fined keys have now been cleared.

A few words about flag behavior are in order. The 16C treats
both the car ry and overflow flags a l i t t le d i f fe rent ly fo r each
funct ion. The carry flag (flag 0) for addit ion indicates that the
sum is 1 digit longer than the given word size. In subtraction it
indicates that a borrow was needed to obtain the answer, and
gene ra l l y t he s ta tus o f t he ca r r y flag fo r sub t rac t i on i s t he
inverse of the equivalent function for addition. FOR THIS REASON,
5 ENTER/ 2 - WILL NOT PRODUCE THE SAME CARRY FLAG STATUS AS 5
ENTER? 2 CHS + !!! (See example #1 later on.)

The ove rflow o r V flags (flag 4) f unc t i on i s a b i t mo re
invo lved (no pun in tended) . Genera l l y, a car ry ind ica tes the
result can' t be represented in current word size, which is the
defini t ion of the overflow. In unsigned mode, therefore, the V
flag is t ied to the carry flag.

In 2's complement mode, the V flag will be set if [the two
added numbers are of the same sign] and [the sign bit of the
result is opposi te that of the or iginal numbers] and [the carry
fl a g a n d t h e n e w s i g n b i t a r e o p p o s i t e] . T h e fl a g r u l e s f o r
mult ipl ication and division are another story altogether.

In mult ip l icat ion, the C flag isn' t even used, and i f over
flow occurs the MSB in the displayed result is replaced with the
sign bit of the complete answer. The multipl ication and division
functions, however, were not included in this program because I
felt the extra coding needed to implement these seldom used func
tions would have made the program uncomfortably large. (I could
be wrong. If I get enough requests I'll gladly expand the program
to include these.)

HP-16C EMULATOR by Gary Friedman (6522)

EXAMPLES
1) 9110-32 ie 9 1 0 1 0 1 1 0 1 1

H - 3 2) + 1 1 1 0 0 0 0 0
59 C —>100111011

A s m e n t i o n e d e a r l i e r , t h e r e a r e 9 1 0 1 0 1 1 0 1 1
t w o w a y s t o d o t h i s p r o b l e m . O n e - (+ 3 2) - 0 0 1 0 0 0 0 0
w a y i s t o a d d 9 1 t o t h e 2 ' s c o m p - 5 9 0 0 1 1 1 0 1 1
l iment o f 32 , as i l lus t ra ted on
top. This is equivalent to keying in 91 ENTER? 32 CHS +, and
results in a carry.

When subtract ing, however, the carry flag means that no
borrow from the 9th bi t was necessary. As the second binary
example shows, when you subtract these two numbers no 9th digit
borrow was needed, (and no carry was produced either for that
matter), and therefore no carry flag was set.

In both examples the numerical answers were the same. It is
up to the user to know how to properly interpret the flags.

2) You're assembling 6502 machine code by hand (this is because
your disk assembler has a fatal bug and the manufacturer refuses
to update i t wi th rev is ion IC). Here, i f the index register (X)
is not zero, we must branch backwards to a routine named RN(1),
which is located at address 020816.

0 2 2 9 D E X C A D e c r e m e n t i n d e x r e g .
022A BNE RN(1) D0 ?? Branch i f no t equa l
0 2 2 C R T S 6 0 " " R e t u r n

What argument do we put at line 022B in order to branch backwards
to line 208? Since this is a relative branch the argument must be
added to the current program counter (which is 022C_, since the PC
is always 1 step ahead) and the result is the next address to be
executed. The problem then is:

208
-22C

DC
DO SEE FLAGS

XEQ d WORD SIZE?
16 R/S D 0
XEQ "HEX" 0 H
208 ENTER? 208 H
2 2 C - FFDC H 0

Since the answer's most s ignificant bi t is set, the 6502 treats
this as a negative number and branches backwards, as we planned.
Notice the correct answer is obtained whether we're in unsigned or
2's complement mode.

This program has been of tremendous help to me in my day to
day DEC<>HEX<>DEC conversions and assembly work. Not only does it
alleviate the need to carry 2 calculators, but it also provides an
alternative to those of us who don't like ENTER? keys that mush
down.

01*LBL "16C"
02 FIX 0
03 CF 29
04 7
05 STO 01
06 255
07 STO 02
08 "HEX"
09 23
10 PASN
11 "OCT"
12 24
13 PASN
14 "BIN"
15 25
16 PASN
17 "DEC"
18 22

REGISTERSi 6Z
JaaJM 1 Cl-5?

JJCV 2 CO-lla

i n n (1 1 - 1 5 ?

UV d (10-21)

(DW 5 (21-26)

78 BIT?
79 GTO 06
80 RDN
81 CF 05
82 FC?C 06
83 SF 05
84 GTO 07
85*LBL 06
86 RDN
87 CF 05
88 FS?C 06
89 SF 05
90*LBL 07
91 +
92
93
94
95 CF

RCL 01
1

155*LBL 12
156 FS? 00
157 GTO 14
158 SF 00
159 FC? 02
160 SF 04
161 RTN
162*LBL 14
163 CF 00
164 FC? 02
165 CF 04
166 RTN
167*LBL "-"
168 SF 07
169 CHS
170 GTO "+"
171*LBL 05
172 NOT

19 PASN 96 BIT? 173 1
20 "-" 97 SF 00 174 +
21 51 98 RDN 175 RTN
22 PASN 99 XEQ 08 176* LBL c
23 " + " 100 RDN 177 FS? 02
24 61 101 FS?C 07 178 GTO 15
25 PASN 102 XEQ 12 179 SF 02
26 "ENT?" 103 RCL 02 180 GTO 16
27 41 104 AND 131* LBL 15
28 PASN 105 STO 03 182 CF 02
29 CLX 106XBL 00 183* LBL 16
30 STO 03 107 RCL 01 184 0
31*LBL "HEX" 108 BIT? 185 GTO "+"
32 1 109 GTO 13 186* LBL d
33 STO 04 110 RDN 187 "WORD SIZE?
34 RON 111 GTO IND 04 138 PROMPT
35*LBL 01 112*LBL 13 189 SIO 01
36 HEXVIEW 113 RDN 190 2
37 HEXIN 114 SF 06 191 X<>Y
33*LBL "OCT" 115 FC? 02 192 Y?X
39 2 116 GTO IND 04 193 1
40 STO 04 117 ENTER? 194 -
41 RDN 118 NOT 195 STO 02
42*LBL 02 119 1 196 RDN
43 OCTVIEW 120 + 197 DSE 01
44 OCTIN 121 RCL 02 198 0
45*LBL "BIN" 122 AND 199 GTO "+"
46 3 123 CHS 200XBL e
47 STO 04 124 STO 03 201 CLA
48 RDN 125 RDN 202 24
49*LBL 03 126 GTO IND 04 203 PASN
50 BINVIEW 127XBL 08 204 23
51 BININ 128 CF 04 205 PASN
52*LBL "DEC" 129 FC? 02 206 22
53 4 130 GTO 09 207 PASN
54 STO 04 131 FC? 05 208 25
55 RDN 132 GTO 17 209 PASN
56*LBL 04 133 FC? 00 210 41
57 " D 134 GTO 10 211 PASN
58 ARCL 03 135 RCL 01 212 51
59 PROMPT 136 BIT? 213 PASN
60*LBL "ENT?" 137 RTN 214 61
61 CF 00 138 GTO 11 215 PASN
62 CF 04 139*LBL 10 216 CLX
63 CF 05 140 RCL 01 217 X<>F
64 CF 06 141 BIT? 218 FIX 4
65 STO 03 142 GTO 11 219 SF 29
66 X<0? 143 RTN 220 END
67 XEQ 05 144*LBL 11
68 RCL 02 145 SF 04
69 AND 146 RTN LBL "16C"
70 ENTER? 147*LBL 09 LBL "HEX"
71 GTO 00 148 FS? 00 LBL "OCT"
72*LBL "+" 149 SF 04 LBL "BIN"
73 X<0? 150 FC? 00 LBL "DEC"
74 XEQ 05 151 CF 04 LBL "ENT?"
75 RCL 02 152*LBL 17 LBL " + "

76 AND 153 0 LBL ii _..

77 RCL 01 154 RTN END 428 BY

IIIM

PPC SPECIAL ISSUE E

KD1 H VdUSZU

Happy bit manipulating!

Gary Friedman (6522)
5084 Gloria Ave.
Encino, CA 91436 USA

TELEPHONE NUMBER-LETTER COMBINATIONS

This program d isp lays /pr in ts a l l le t te r combinat ions o f a
seven digit phone number. For example, when we call "Time", we
dial "POPCORN" instead of 767-2676. This program generates the
entire list of combinations for your favorite numbers.

Input is any seven digit number in the form XXX.XXXX. For
example, the number above would be entered as 767.2676 in X. XEQ
"TEL" and the fun begins; the program halts after all combinations
have been displayed.

Minimum SIZE is 014, and the program clears the 14 highest
data registers. An Extended Functions module or HP-41CX is re
quired. The ALPHA register is cleared, as are Flags 00 through
07, and Flag 25 should be clear on entry. The routine requires 37
program registers.

Copyright 1983

REGISTERS! 38
iom i g-5)

Carter Buck (4783)
P.O. Box 11203
Oakland, CA 94611-0203 USA

(OW 2 (5-13)

ROU 3 (15-223

ROW 4 (23-30)

ROM 5 (31-38)

RflW 6 (38—lap

ROW 10 (BI-5S)

JOW 11 (68-753

ROM 12 C7S-fl3)

ROM 13 (61.-92)

ROW 11. (92-100

ro* is uat-iin
iilllli

ROT IB <
llllll
10-1

llll
7)

Illlllllllllllllllllllllll
llllllllll llllll III! !l!ll!i lllilll Illll lllllllllllllllll III II1 IIIIIIIMIUIIIIII llll
IM IB (127- 3*3

tW 19 <135-1*2J

2Z tliZ-U9>

c

^ TELEPHONE NUMBER ■LETTER COMBINATIONS by C. B u c k (4 7 8 3) £

01J LBL "TEL" 51 GTO 14 101 AVIEW
02 SIZE? 52*LBL 06 102 E
03 14 53 "MNO" 103*LBL 15
04 X>Y? 54 GTO 14 104 CHS
05 PSIZE 55*LBL 07 105 AROT
06 56 "PRS" 106 -
07 X<>F 57 GTO 14 107 ATOX
08 R? 58*LBL 08 108 SIGN
09 RCL X 59 "TUV" 109 FS? IND Y
10 SIZE? 60 GTO 14 ne GTO 14
11 8 61*LBL 09 111 ASTO L
12 - 62 "WXY" 112 CLA
13 E-3 63*LBL 14 113 ARCL IND Z
14 ST* T 64 CLX 114 AROT
15 ISG X 65 RDN 115 RDN
16 * 66 ASTO IND Y 116 ASTO IND Y
17 R? 67 DSE X 117 CLA
18 FRC 68 GTO 10 118 ARCL L
19 SIGN 69 CLA 119 X<>Y
20 RDN 70 RDN 120 ABS
21 7 71 7.007 121 X<>Y
22 GTO 14 72 + 122 7
23* LBL 10 73 3 123 ST+ L
24 DSE Y 74*LBL 11 124 RDN
25v LBL 14 75 ISG T 125 DSE IND L
26 El 76 AOFF 126 GTO 13
27 ST* L 77 FC? IND T 127 3
28 X<> L 78 STO IND Y 128 STO IND L
29 INT 79 ISG Y 129 SIGN
30 ST- L 80 GTO 11 130*LBL 14
31 GTO IND X 81 X<> L 131 ISG Z
32*LBL 00 82 - 132 GTO 15
33 SF IND Y 83 R? 133 RDN
34 "0" 84*LBL 12 134 ST- Y
35 GTO 14 85 DSE Y 135 E3
36*LBL 01 86*LBL 13 136 /
37 SF IND Y 87 ARCL IND Y 137 +
38 "1" 88 FS? IND X 138
39 GTO 14 89 GTO 14 139*LBL 16
40*LBL 02 90 2 140 STO IND Y
41 "ABC" 91 CHS 141 ISG Y
42 GTO 14 92 AROT 142 GTO 16
43*LBL 03 93 RDN 143 X<>F
44 "IJEF" 94 ATOX 144 R7
45 GTO 14 95 RDN 145 SIGN
46*LBL 04 96 ATOX 146 CLST
47 "GHI" 97 RDN 147 X<> L
48 GTO 14 98*LBL 14 148 CLD
49*LBL 05 99 DSE X 149 END
50 "JKL" 100 GTO 12

MCODE FOR BEGINNERS

R/SJ

SKWID, THIS IS THE BOSS AGAIN

What do you want this time?

YOUR ARTICLE ON THE DEVELOPMENT MODULE WAS NOT TOO BAD. HOW WOULD
YOU LIKE TO WRITE ANOTHER ARTICLE FOR US?

PPC SPECIAL ISSUE E

Great, we could become world famous and may even qet published
again.

POP!

OH, SORRY ABOUT THAT, SKWID, BUT IT WAS GETTING A LITTLE TOO HARD
TO SEE WITH YOUR HEAD SWELLED UP LIKE THAT.

NOW, YOUR MISSION, SHOULD YOU CHOOSE TO ACCEPT (does this sound
familiar?) IS TO INSTILL UPON SOME MERE BEGINNERS THE RUDIMENTS OF
MCODE PROGRAMMING. THIS MESSAGE WILL SELF DESTRUCT IMMEDIATELY.

Well, Skwid, the boss has done it again. He blew our 41's to
bits, what do we do know? Well, guys, it looks like we're going
to have to put in a little overtime on this one. Does anyone know
how to construct a 41 from this mess? (who cares?)

I n o r d e r t o u n d e r s t a n d t h e s t r u c t u r e o f m a c h i n e l a n g u a g e
programming (MCODE) on the 41 you must know the structure of the
internal registers (this is much like a good synthetic programmer
knows the RAM structure). A diagram of the basic structure is
given below.

A (56)

B (56)

To
RAM <s tf
Registers

C (56)

M (56)

N (56)

P (4) l-Q L4LI

Hfpc~ (161

t
Subr.
Stack
4-Levels

ll_L
-» ?T (8)

T (8)

- » I G (8) I

~ ^ I K Y (8) I

- H F I (1 4)

And now for a little program.

SKWID, THIS IS THE BOSS. HOW MANY TIMES MUST I TELL YOU TO
DOCUMENT YOUR STUFF? ARE YOU TRYING TO LOSE EVERYONE? I, FOR
ONE, AM ALREADY LOST.

Okay, here we go again.

Register Usage

C T h i s i s t h e m a i n r e g i s t e r . A l l c o m m u n i c a t i o n w i t h R A M
is done through this register. I t is the only register
that can interact with al l registers (except T).

A T h i s r e g i s t e r m a y i n t e r a c t w i t h t h e C a n d B r e g i s t e r s .
Arithmetic may be done between each of these registers.

B S a m e a s r e g i s t e r A .
M and N These regis ters are used for s torage and may only

interact with register C.
P and Q These are the pointers. They point to digits in the A,

B, and C registers. They may range from 0-13. Only
one may be selected at any time.

Car ry Th is i s on ly one b i t . I t may be se t and tes ted . How
ever, the next step after the carry is set will always
clear the carry.

P C T h i s i s t h e p r o g r a m c o u n t e r . T h e s u b r o u t i n e s t a c k i s
only 4 high (such is life). Returns may be pushed onto
the stack and popped off of it.

G T h i s r e g i s t e r i n t e r a c t s w i t h t h e C r e g i s t e r a t t h e
d ig i t po in ted to by the act ive po in ter and the next
h ighest d ig i t . I f the po in ter = 13, then wraparound
takes place.

S T F l a g s 0 - 7 . I n t e r a c t s w i t h d i g i t s 0 a n d 1 o f r e g i s t e r
C. These flags may be cleared, tested, and set.

K E Y T h i s i s t h e k e y b o a r d fl a g . I t b e c o m e s s e t w h e n e v e r a
key on the keyboard is set.

F I P e r i p h e r a l fl a g r e g i s t e r .

Now it is time to show you the fields on a 56 bit register. These
are used extensively to operate on only part of the C, B, or A
registers.

Nybble: 13 12 11 ie

Field
Field
Field
Field

7 6

ALL --
< M S > < M -><XS>

< A D R S&X
<-KY—>

THERE YOU GO AGAIN, SKWID, JUMPING OVER ALL OF THE EXPLANATIONS TO
GET TO THE PROGRAM.

Aw, come on, just this once.

DO YOU WANT TO BE PUBLISHED?

You win again.

I ALWAYS DO.

F i e l d E x p l a n a t i o n

S&X
XS
ALL
M
MS
ADR

KY
P-Q

@R
R<

Exponent and exponent sign.
Exponent sign only.
Al l 14 dig i ts .
Mantissa.
Mantissa sign.
T h i s i s w h e r e t h e a d d r e s s f r o m t h e r e t u r n s t a c k i s
placed when it is popped from the return stack or where
it is taken from when the address is pushed onto the
stack.
This is where the C and KY registers exchange contents.
All digits P through Q (P<=Q).
All digits P through 13 (P>Q).
At digit pointed to by active pointer.
All digits 0 through the digit pointed to by R.

At the end of this art ic le (we hope) is a part ial l ist ing of the
instruction set. The purpose of most of the instructions is self
explanatory since they have RPN counterparts or the meaning can be
obtained by just looking at the instruction. However there are a
few oddities (wouldn't you know it, HP does it to us again). They
will be explained below.

W o r d T a s k

RSHFA Sh i f t reg is te r A r igh t one nybb le as spec ified by the
p o s t fi x . T h e l e f t m o s t n y b b l e i s c o p i e d i n t o t h e 2
le f tmost d ig i ts .

RSHFB Same as above but for register B.
RSHFC Same as above but for register C.
LSHFA Same as the right shift but does a left shift.
RCR Rotate register C r ight by the number of digi ts specified

by the postfix.
R= Se t t he ac t i ve po in te r equa l t o t he number spec i fied by

the pos tfix .
?R= Se t ca r ry b i t i f po in te r equa ls the number spec ified by

the pos tfix .
LD@R Load the number (0 -F) a t the d ig i t the po in te r i s a t .

Decreases pointer by one.
?FSET Set the car ry flag i f flag spec ified is se t .

Well, boss, is it okay to write a short program now?

SURE SKWID, EVERYTHING LOOKS GOOD UP TO THIS POINT.

We know that.

W e s h a l l w r i t e a Y < > Z r o u t i n e . K e i t h J a r e t t , o n e o f o u r
illustrious members (we can't remember why, it seems our memories
have been synthetically cleared), suggested this routine. The way
to fill out the function address table is given in PPC Calculator
Journal V9N3P30 and the ERAMCO user's manual on page 23. Also, at
the end of this article (again we hope) is a table containing the
hex code for the names of rom functions.

Now here's the routine (it 's even annotated. Surprise, surprise).

Hexcode Mnemonic Purpose

The functions name is in reverse order. The
last letter of the name has hex 080 added to
i t .

Put Y register into C.
Save Y in A.
Get Z register.
Write Z out to Y.
Put Y back into C so it may be written to Z.
Write Y to Z.
Return.

How's that, boss?

BEAUTIFUL! I COULDN'T HAVE DONE BETTER MYSELF.

We know that. Now for another routine. This one shall be a MCODE
version of the go to end routine in the PPC ROM. This routine
puts you at the first line in the program that has the permanent
END as its end.

The object of the program is to place the location of the .END.
into the last 2 bytes of the b register. As we all know (even if

09A "Z"
03E ">"
03C "<"
019 "Y"
0B8 READ 2(Y)
10E A=C ALL
078 READ 1(Z)
0A8 WRIT 2(Y)
0AE A<>C ALL
068 WRIT 1(Z)
3E0 RTN

Okay, how about a program? Continued on page 12

PPC SPECIAL ISSUE E

KEYING HP-41 SYNTHETIC INSTRUCTIONS

Shortly after the introduction of the HP-41, avid PPC members
discovered a method of breaking two-byte functions in half, taking
t h e fi r s t b y t e o f o n e f u n c t i o n , g i v i n g i t t h e s e c o n d b y t e o f
ano ther func t ion , and c rea t ing a th i rd func t ion w i th d i f fe ren t
character ist ics than the first two! This programming technique,
originally dubbed "Synthetic Programming", was expanded to allow
virtually ful l control of the HP-41 system registers. The use of
synthetic instructions in the HP-41 has worked for al l variet ies
of HP-41 that have been introduced thus far, but you should bear
in mind that Hewlett-Packard does not support or endorse the use
of Synthetic Programming on your calculator. If you should happen
to call HP and ask about "Synthetic Programming", they'll either
disavow any knowledge of it or refer you right back to PPC — so
d o n ' t c a l l H e w l e t t - P a c k a r d w i t h q u e s t i o n s a b o u t S y n t h e t i c "
Programming!

Synthetic Programming is purely a software technique to access new
functions in your HP-41, and as such it won't cause any damage to
you HP-41 hardware. As with any new ski l l , though, there's a
price that must be paid - and the price for learning Synthetic
Programming is paid with plenty of "MEMORY L0ST"'s.

Just to get you acquainted with some of the many synthetic in
structions, a few of them are listed below:

D i s p l a y P r i n t e r
The 6 status registers M, N, 0, P,
Q, and F display differently than
t h e y a p p e a r o n t h e t h e r m a l
p r i n t e r . C o m p a r e t h e d i s p l a y
c h a r a c t e r s w i t h t h e i r p r i n t e d
c o u n t e r p a r t s o n t h e b y t e t a b l e .
One of 128 synthetic tones.
Direct RCL of data register 107.
A global (not local) LBL "A".
Quotes in display text lines.
Many special characters available.
Short form EEX saves one byte.
PPC NOP, hex F0, null text line.

Over the years, many techniques have been developed by PPC members
world-wide to create these functions in their HP-41. Early tech
niques used "byte jumping", or using HP-67/97 cards, or modifying
other HP-41 cards. With the development of the PPC ROM, Synthetic
Programming became more readily available to thousands. And to
day, with such programmer's aids as the ZENROM and CCD-Module, you
can key Synthetic instructions directly into your HP-41 from the
keyboard. For those of you who would l ike to start out ' fresh'
with Synthetic Programming, use the following technique (PPC bug
9) to enter the 'byte grabber' function into your HP-41.

01 DSE M 0 1 DSE C
02 ISG N 8 2 I S G v
03 VIEW 0 0 3 V I E W 3
04 X<>P 0 4 X O T
05 RCL Q 9 5 R C L _
06 STO r 0 6 STO T
07 TONE Z 8 7 T O N E Z
08 RCL F 8 8 R C L F
09 LBL TA @ 9 * L B L " R
10 T"PPC" 1 8 ■• -PPC"
11 XX J* 1 1 T a P - "
12 E3 1 2 E 3
13 x 1 3

1. Master Clear (back-arrow, ON) to obtain "MEMORY LOST".
2. ASN "+" to the LN key.
3. ASN "DEL" to the LOG key.
4. Switch to USER mode.
5. Switch to PRGM mode.
6 . E n t e r L B L T T i n t o m e m o r y (a n y A l p h a l a b e l w i l l d o) .
7. Do CAT 1, and R/S immediately with LBL T in the display.
8. Delete 1 line (DEL 001) by pressing LOG, then i+.
9 . Wai t a moment , then (fo r C or CV on ly) , p ress BST.

10 . Do GTO .005 , and you ' l l see LBL 03 in the d i sp lay.
11 . De le te 3 l i nes (DEL 003) by p ress ing LOG, then \ / x .
12. Go into Alpha mode, and enter "7AAAAAA"
1 3 . C a n d C V o w n e r s w i l l s e e " ? A "
14. Switch out of PRGM mode, and do GTO.. (PACKS calculator).

You should now end up with that most indispensable tool of Synthe
tic Programming, the Byte Grabber (known as BG to his friends).
To verify that you've done this correctly, press and hold down the
LN key (until NULL appears), and confirm that it shows XROM 28, 63
(you ' re s t i l l in USER mode, r igh t?) . You can save th is on a
status card if you wish, or you may want to practice this l itt le
technique 'ti l you can do it at will. If you don't get the XROM
28, 63, try again from the beginning.

The table on the opposite page of this brief HP-41 byte instruc
t ion descr ipt ion is the HP-41 "HEX TABLE". Along the edges,
you ' l l find the hexadec imal va lue o f a l l o f the var ious HP-41
ins t ruc t i ons , bo th s ing le - and mu l t i - by te t ypes . The dec ima l
value for each instruction is in the lower left corner of the box.
The top line of each box indicates the function (for single byte
i n s t r u c t i o n s) o r t h e p r e fi x (f o r m u l t i - b y t e i n s t r u c t i o n s) . T h e
next l ine shows the postfix instruction for two-byte functions on
the le f t , w i th the d isp lay represen ta t ion o f tha t by te on the
r ight. Final ly, the symbol in the lower r ight corner of the box
is the Thermal Printer/Plotter representation of each byte.

8 l>PC SPECIAL ISSUE E

You can use the Byte Grabber (BG) function to 'snatch' the first
byte off of a mult i-byte function. Every t ime you press the BG
key, the HP-41 opens another register of program memory (out of
the unused registers left). Because the first byte of the BG is a
Text 7 character, the HP-41 thinks that it needs 8 bytes (1 byte
for the Text by te , p lus 7 charac ters) , and w i th on ly 7 by tes
available in the new register, it 'grabs' the next byte of program
memory. By first creating a two-byte function whose second byte
is a useful 'prefix' , and fol lowing i t wi th a useful 'postfix' , we
can create virtually any combination of multi-byte functions.

To demonstrate, we'll show you how to make the example functions
shown above. To make things easier, first ASN the PACK function
to the LOG key, and the BST function to the TAN key.

WARNING: DO NOT BYTE-GRAB AT THE PROGRAM STEP IMMEDIATELY PRE
CEDING AN END!!! This will cause the CAT 1 chain to loose part of
i ts l inkage, and can resul t in a calculator ' lock-up' condi t ion.
For instruct ional purposes, we' l l use the RCL byte as the first
byte (of the three total bytes needed), which will be 'grabbed' by
the Byte Grabber. To make sure that we have enough room in pro
gram memory for byte grabbing, and to prevent any accidents, we'll
precede each sequence with ENTER", then BST to the ENTER". This
will ensure that we are in position to do the byte grabbing.

Bytes 145 and 122
ENTER"
RCL IND 17
S I G N B G a t E N T E R "

Bytes 159 and 113
ENTER"
RCL IND 31
X o Y B G a t E N T E R "

Bytes 144 and 107
ENTER"
RCL IND 16
R - D B G a t E N T E R "

Bytes 192, 0, 242, 0, 65
ENTER"
RCL IND 64
+
" Z A " B G a t E N T E R "
PACK to l ink CATalog 1

D S E M B y t e s 1 5 1 a n d 1 1 7 S T O I -
ENTER"
RCL IND 23
R D N B G a t E N T E R "

I S G N B y t e s 1 5 0 a n d 1 1 8 T O N E Z
ENTER"
RCL IND 22
L A S T X B G a t E N T E R "

V I E W 0 B y t e s 1 5 2 a n d 1 1 9 R C L F
ENTER"
RCL IND 24
C L X B G a t E N T E R "

X < > P B y t e s 2 0 6 a n d 1 2 0 L B L T A
ENTER"
RCL IND 78
X = Y ? B G a t E N T E R "

RCL Q Bytes 144 and 121
ENTER"
RCL IND 16
X / Y ? B G a t E N T E R "

™ P P C " B y t e s 2 4 5 , 3 4 , 8 0 , 8 0 , 6 7 , 3 4
01 ENTER"
02 TXPPCX (X's used for ")

BG at ENTER", and the ASCII characters in the text line will now
be ind iv idua l ins t ruc t ions (the by te grabber g rabbed the tex t
prefix byte). Lines 03 and 07 will be E"X-1. Delete these lines
and replace them with RCL 02. BST to the ENTER", then BG. Delete
the resulting text l ine and the STO 15. You'll see the modified
text l ine with the 'special ' characters replacing the X's.

l£££j Bytes 244, 6, 4, 5, 1
01 ENTER"
02 TABCD (any four Alpha characters)

BG at ENTER", and delete the four following instructions (which
used to be ASCII characters!). Insert LBL 05, LBL 03, LBL 04, and
LBL 00. BST to the ENTER", then BG. Delete the resulting text
l i ne and the STO 15 . You ' l l see the mod ified tex t l i ne w i th
'hangman' characters replacing the old Alpha characters.

E3 Bytes 27,
ENTER"
1 EEX 3

19

PACK, then BG at ENTER"

Note: the HP-41 uses a NULL byte (00 hex) to separate consecutive
numeric entries. PACKing will remove the extra NULL bytes if the
preceding instruction is not a number. The PACKing ensures that
you byte-grab the '1' instruction, not the NULL.

T B y t e 2 4 0
ENTER"
RCL IND T BG at ENTER"

This has been just a brief description of a very few of the many
possibilities that can open up to you with Synthetic Programming.
For further information, you should refer to any of several books
on Synthetic Programming, and back issues of the PPC Journal. Of
particular interest are "SYNTHETIC PROGRAMMING ON THE HP-41C", by
William Wickes, and "SYNTHETIC PROGAMMING MADE EASY" by Keith
Jare t t . A lso , check pages 4 & 5 o f th i s Spec ia l I ssue fo r a
description of the PPC ROM. This ROM, and its accompanying man
ual, will provide you with more information on Synthetic Program
ming than you can imagine. These (and many other HP-41 books) can
be ordered through EduCalc Mail Store, 27953 Cabot Road, Laguna
Niguel, CA 92677, (714) 831-2637.

Pvsl

H23 HP-41C COMBINED HEX/DECIMAL BYTE TABLE GSH

HP-41 C COMBINED HEX/DECIMAL BYTE TABLE
0 1 2 3 4 5 6 7 8 9 A B c D E F

0
NULL
oo -
0 ♦

LBL 00
01 A
1 -

LBL 01
02 B
2 x

LBL 02
03 8
3 «■

LBL 03
04 '-
4 a

LBL 04
05 a
5 0

LBL 05
06 T
6 r

LBL 06
07 8
7 4 -

LBL 07
08 8
8 A

LBL 08
09 8
9 a

LBL 09
10 8
10 ♦

LBL 10
1 1 8
11 >■

LBL 11
12 ;J
1 2 v

LBL 12
1 3 I
1 3 i

LBL 13
14 8
14 <r

LBL 14
15 8
1 5 *

0

1
0
16 B
16 e

1
17 8
17 Q

2
1 8 8
18 &

3
19 8
19 R '

4
20 8
2 0 a

5
21 8
21 R

6
2 2 8
22 a.

7
23 8
2 3 0

8
24 8
24 6

9
25 8
25 O

26 8
26 u

EEX
2 7 8
27 (E

NEG
2 8 8
2 8 *

GT0T
29 i i
2 9 *

XEQT
3 0 8
3 0 £

W T
31 8
31 %

1

2
RCL OO
32
32

RCL 01
3 3 i
3 3 !

RCL 02
3 4 "
3 4 "

RCL 03
35' il
3 5 #

RCL 04
3 6 5
3 6 *

RCL 05
37 H
37 V.

RCL 06
3 8 3
3 8 &

RCL 07
3 9 '
3 9 '

RCL 08
4 0 '
40 <

RCL 09
41 !
41 >

RCL 10
4 2 *
4 2 *

RCL 11
43 :-
4 3 +

RCL 12
4 4 -
4 4 '

RCL 13
4 5 -
4 5 -

RCL 14
4 6 .
4 6 -

RCL 15
47 /
4 7 s

2

3
STO 00
48 0.
4 8 9

STO 01
49 1
49 1

STO 02
5 0 5
5 0 2

STO 03
51 3
5 1 3

STO 04
52 H
5 2 4

STO 05
53 5
5 3 5

STO 06
54 G
5 4 6

STO 07
55 1
5 5 7

STO 08
5 6 0
56 8

STO 09
57 g
5 7 9

STO 10
5 8 :
58 =

STO 11
59 >
59 >

STO 12
6 0 I
6 0 <

STO 13
6 1 -
6 1 =

STO 14
6 2 i
6 2 >

STO 15
6 3 9
6 3 ?

3

4
+
6 4 e
6 4 0

6 5 R
65 Fl

6 6 3
6 6 B

/
67 C
67 C

X<Y?
6 8 2
6 8 D

X>Y?
69 £
69 E

X<Y?
70 r-
7 0 F

1 +
71 G
71 G

I -
72 H
72 H

HMS +
7 3 I
7 3 I

HMS-
74 d
74 J

MOD
75 K
7 5 K

%
7 6 L
7 6 L

%CH
77 M
77 M

P-*R
78 N
7 8 N

R->P
79 D
79 O

4

5
LN
80 P
8 0 P

XT2
81 Q
81 Q

SQRT
8 2 R
8 2 R

YtX
8 3 5
8 3 S

CHS
8 4 r
8 4 T

EtX
85 U
85 U

LOG
86 V
8 6 V

10TX
87 W
87, W

EtX-1
88 -
88 X

SIN
89 V
89 Y

COS
90 2
9 0 2

TAN
91 E
91 C

ASIN
92 '-
9 2 x

ACOS
9 3 J
93 D

ATAN
9 4 ?
9 4 t

-DEC
9 5 -
9 5 -

5

6
1/X
96 T
96 T

ABS
97 a
97 a

FACT
9 8 b
9 8 b

X*0?
99 c
9 9 c

X>0?
100 d
100 d

LN1+X
101 «.
101 e

X<0?
A 8
102 f

X=0?
B 8
103 ̂ >

INT
C 8
104 h

FRC
D 8
105 i

D->R
E 8
106 J

R->D
F 8
107 k

-HMS
G 8
108 1

-HR
H 8
109 m

RND
1 8
110 n

-OCT
J 8
111 o

6

7
CLI
t e
112 p

X<>Y
Z B
113 <*

PI
Y I
114 r

CLST
X 8
115 £

R t
L 8
116 t

RDN
ML 8
117 u

LASTX
N \ 8
118 v

CLX
0 3 8
119 w

X = Y?
P t 8
120 x

X*Y?
Q _ 8
121 y

SIGN
l - T 8
122 z

X * 0 ?
a 8
123 *

MEAN
b 8
124 1

SDEV
c 8
125 +

AVIEW
d I
126 S

CLD
e !--
127 P

7

j 0
oooo

1
0001

2
0010

3
0011

4
0100

5
0101

6
0110

7
0111

8
1000

9
1001

A
1010

B
1011

C
1100

D
1101

E
1110

F
l l l l

HP-41 C COMBINED HEX/DECIMAL BYTE TABLE
0 1 2 3 4 5 6 7 8 9 A B c D E F

8
DEG
IND 00
128 ♦

RAD
IND 01
129 -

GRAD
IND 02
130 x

ENTERt
IND 03
131 «■

STOP
IND 04
132 a

RTN
IND 05
133 e

BEEP
IND 06
134 r

CLA
IND 07
135 4

ASHF
IND 08
136 A

PSE
IND 09
137 o

CLRG
IND 10
138 ♦

AOFF
IND 11
139 :-.

AON
IND 12
140 p

OFF
IND 13
141 <£

PROMPT
IND 14
142 <

ADV
IND 15
143 *

8

99
RCL
IND 16
144 9

STO
IND 17
145 Q

ST +
IND 18
146 &

ST-
IND 19
147 r

S T *
IND 20
148 d

ST/
IND 21
149 r

ISG
IND 22
150 a.

DSE
IND 23
151 0

VIEW
IND 24
152 6

IREG
IND 25
153 0

ASTO
IND 26
154 u

ARCL
IND 27
155 E

FIX
IND 28
156 «

SCI
IND 29
157 *

ENG
IND 30
158 £

TONE
IND 31
159 m

A
XR 0-3
IND 32
160

XR 4-7
IND 33
161 !

XR8-11
IND 34
162 "

XI2-15
IND 35
163 #

X16-19
IND 36
164 *

X20-23
IND 37
165 X

X24-27
IND 38
166 Zc

X28-31
IND 39
167 •

SF
IND 40
168 <

CF
IND 41
169 >

FS?C
IND 42
170 *

FC?C
IND 43
171 +

FS?
IND 44
172 ,

FC?
IND 45
173 -

£8 IND
IND 46
174 .

SPARE
IND 47
175 V

A

B
SPARE
IND 48
176 0

GTO 00
IND 49
177 1

GTO 01
IND 50
178 2

GTO 02
IND 51
179 3

GTO 03
IND 52
180 4

GTO 04
IND 53
181 5

GTO 05
IND 54
182 6

GTO 06
IND 55
183 7

GTO 07
IND 56
184 8

GTO 08
IND 57
185 9

GTO 09
IND 58
186 =

GTO 10
IND 59
187 ;

GTO 11
IND 60
188 <

GTO 12
IND 61
189 =

GTO 13
IND 62
190 >

GTO 14
IND 63
191 ?

B

C
GLOBAL
IND 64
192 0

GLOBAL
IND 65
193 R

GLOBAL
IND 66
194 B

GLOBAL
IND 67
195 C

GLOBAL
IND 68
196 D

GLOBAL
IND 69
197 E

GLOBAL
IND 70
198 F

GLOBAL
IND 71
199 G

6LOBAL
IND 72
200 H

GLOBAL
IND 73
201 I

GLOBAL
IND 74
202 J

GLOBAL
IND 75
203 K

GLOBAL
IND 76
204 L

GLOBAL
IND 77
205 M

X<>—
IND 78
206 N

LBL -
IND 79
207 0

C

D
GTO --
IND 80
208 P

GTO —
IND 81
209 Q

GTO '-'-
IND 82
210 R

GTO —
IND 83
211 S

GTO —
IND 84
212 T

GTO —
IND 85
213 U

GTO —
IND 86
214 V

GTO —
IND 87
215 W

GTO —
IND 88
216 X

GTO --
IND 89
217 Y

GTO —
IND 90
218 Z

GTO —
IND 91
219 :

GTO —
IND 92
220 x

GTO —
IND 93
221 1

GTO —
IND 94
222 *

GTO —
IND 95
223 -

D

E
XEQ —
IND 96
224 T

XEQ —
IND 97
225 a

XEQ —
IND 98
226 b

XEQ —
IND 99
227 c

XEQ —
IND100
228 d

XEQ —
IND101
229 e

XEQ —
IND102
230 f

XEQ —
IND103
231 <9

XEQ —
IND104
232 h

XEQ —
IND105
233 i

XEQ —
IND106
234 J

XEQ —
IND107
235 k

XEQ —
IND108
236 1

XEQ —
IND109
237 m

XEQ —
IND110
238 n

XEQ —
IND111
239 o

E

F
TEXTO
INDT
240 r>

TEXT 1
IND Z
241 i

TEXT 2
IND Y
242 r

TEXT 3
IND X
243 s

TEXT 4
IND L
244 t

TEXT 5
INDML
245 u

TEXT 6
IND. N \
246 v

TEXT 7
INDO]
247 ui

TEXT 8
IND Pt
248 x

TEXT 9
INDQ-
249 v

TEXT10
INDhT
250 z

TEXT11
IND a
251 ir

TEXT12
IND b
252 1

TEXT13
IND c
253 ■*

TEXT14
IND d
254 S

TEXT15
IND e
255 F

F

0
0000

1
0001

2
0010

3
0011

4
0100

5
0101

6
0110

7
0111

8
1000

9
1001

A
1010

B
1011

C
1100

D
1101

E
1110

F
l l l l

PPC SPECIAL ISSUE E

FOREWORD

Because of the nature of the PPC ROM PROJECT, this
manual is somewhat unusual. This manual is the effort
of over one hundred users who worked directly on it,
and many hundreds of others who indirectly contri
buted to its completion. Before diving into the
routines, the PPC ROM user should first read the
introductory material in Part 1, which includes the
Preface, Organization and Use of Manual, Functional
Grouping of Routines, Abstracts, and brief Intro
duction to Synthetic Programming. Once you have read
Part 1 you may explore at random with a minimum of
difficulty. Refer to the Glossary in the Appendices
for definitions of unfamiliar terms.

This project is unique in the history of software
projects. IBM and other large corporations have
assigned multi-tens of programmers to a software
project, but never before have over 100 programmers
worked so long and so hard on a project—without
compensation of any kind. The PPC ROM PROJECT is a
community project in the true sense of the word. The
project has always been completely public with month
by month reports openly published for all to study
and respond to.

It took two years and two months to complete. The
first year was spent in mastering the HP-41 system,
and while we were "first in line" for HP's announced
Custom ROM Program, we waited until we could utilize
the full power of the HP-41 to produce as complete a
programmer's ROM as possible.

We believe in true personal computing and that a so-
called higher level language is not always the path to
greater computing power. We want to manage our always-
too-small memory in ways we think are best. We prefer
a flexible operating system that allows us to control
our programming environment,and we want a well thought
out operating system that can be altered if we wish.
The routines in the PPC ROM express these interests
and concerns. Much of the work that went into the ROM
is original and makes a contribution to the Art. Here
are a few examples.

• Programmed and documented by hundreds of users
• Outstanding ratio of features per byte
• Unusually complete technical details
• Personal contact for additional help
• A routines ROM - not an applications program ROM.

This is a programmer's ROM.
• The full power of Synthetic Programming is made

available to all HP-41 users.
• Operating system extension and enhancement programs
• Fastest known numerical sort routine
• Block and matrix operations defined and programmed
• Extended capability and improved accuracy in

financial calculat ions
• Commendable integrator program

• Great ly expanded mult ip lot and high resolut ion
graphics programs

• Matr ix format pr in t ing of f lags set in View Flags
• Skipping zero data in Block View
• Better access to all of HP's ROMs with ___\

Routine
• Expanded memory using f_M and f__t for QUAD

"page" switching

One of the main objectives of the PPC ROM USER'S
MANUAL is to provide an expression of the type of
deta i l that programmers desi re. This inc ludes more
than just a col lect ion of general purpose rout ines
wi th as many technica l deta i ls as possib le. The
users are an essential part of the loop,and the PPC
ROM project is designed to include user inputs. A
portion of the ROM fund is being held in reserve for
a fol low-up addendum that wi l l include:

a . Co r rec t i ons f o r t he e r ro r s f ound
b. Description of any BUGs that may be found
c . Add i t i ona l examp les
d . Add i t i ona l App l i ca t i ons P rog rams
e. Suggestions for ROM or Manual improvement
f . R e v i e w o f p r o j e c t
g. Conclusions and recommendations for future

"user community" software development projects

A word about bu
We define a BUG
gram to operate
Unless precise
you may have qu
t i o n s . I f y o u
know about it.
hundreds of hou
major BUGs. Th
part should be
the PPC Clubhou
by gaining a be
i n s t r u c t i o n s
inputs may be i
hunt ing.

gs. BUGs are of concern to al l users,
to be a fa i lure of a rout ine or pro-
accord ing to the complete ins t ruct ions,

inputs and condi t ions are spec ified,
est ions regarding the complete inst ruc-
think you have found a BUG, we want to
B u t fi r s t y o u s h o u l d r e a l i z e t h a t a f t e r

rs of testing we haven't found any
ere fore , a cons iderab le e f fo r t on your
expended before you think BUG and call
se. Many "bugs" may be explained away
tter understanding of the complete
We do want to hear from you so your
ncluded in the addendum. Happy BUG

There were many ideas for routines in the ROM that
for var ious reasons never became a rea l i ty. I t i s
possible that these creative ideas may appear in a
future PPC ROM. We would like to have seen more
a lpha -s t r i ng capab i l i t i e s and d iagnos t i c r ou t i nes .
In the math group we would like to have seen some
r o u t i n e s i n t h e s t a t i s t i c s a r e a . A f t e r r e a d i n g t h i s
manual and mastering the PPC ROM,you will no doubt
th ink o f severa l rou t ines tha t you w i l l fee l shou ld
also have been included.

We had planned special microcode routines that would
have simultaneously simplified and expanded memory
management, but the SDS system that would allow
microcode in the ROM would have caused a three month
de lay, so these rou t ines d id no t mater ia l i ze . One
reason a lpha-st r ing and d iagnost ic rout ines d id not
material ize was lack of space,and these kinds of
routines tend to be memory intensive. There was very
l i t t l e d i s c u s s i o n o f s t a t i s t i c s r o u t i n e s , a n d n o s p e c i f
i c s ta t i s t i cs rou t i nes were ac tua l l y submi t t ed .

10 PPC SPECIAL ISSUE E

PPC PPC ROM ROUTINES IN HEX TABLE ORDER

MISC.
+K - Additional Key Assign- 1,1,43

ments
-B - Store half of LB

(routine)
IK - First Key Assignment
2D - Decode 2 Bytes to Dec

A

A? - Assign Reg. Finder
T# of)

AD - Alpha Delete last charac-1,6.98
ter

AL - Alphabetize X & Y
AM - Alpha to Memory
Ab - Alpha store b.

B A - B a r c o d e A n a l y z e r 5 , 1 , 1 ,
B C - B l o c k C l e a r 5 , 5 , 2 0 8
BD - Base B~"to base Decimal 4,1,1,
B E - B l o c k " | x c h a n g e " 5 , 3 , 3 2
B I - B l o c k X n c r e m e n t 2 , 7 , 6 1
BL - BLDSPEC inputs for LB 2,7,1
B M - B l o c k M o v e 5 , 4 , 1 0 3
B R - B l o c k R o t a t e 5 , 4 , 1 2 6
B V - B l o c k V i e w 3 , 5 , 9 9
B X - B l o c k E x t r e m e s 5 , 4 , 1 5 5
B z - B l o c k S t a t i s t i c s 5 , 5 , 1 9 5

C ? - C u r t a i n F i n d e r 1 , 6 , 4 6
CA - Complex Ari thmetic 4,4,1
C B - C o u n t B y t e s 2 , 9 , 3 3
CJ - Calendar Date to Julian 4,3,119

Date
CD - Character to Decimal 2,2,178
CK - Clear Key Assignments 1,3,40
C M - C o m b i n a t i o n s 4 , 2 , 9 8
CP - Column Print formatting 4,6,76
C U - C u r t a i n U p 2 , 2 , 1 3 1
C V - C u r v e F i t 3 , 5 , 1 ,
Cx - Curtain to absolute dec- 2,2,128

imal location in X

D

DC - Dec ima l to Charac te r 1 ,5 ,175
D F - D e c i m a l t o . F r a c t i o n 3 , 1 0 , 5 0
D P - D e c i m a l t o P r o g r a m 2 , 9 , 6 7

Pointer
D R - D e l e t e R e c o r d 5 , 4 , 9 7
D S - D i s p l a y S e t 2 , 1 , 4 2
D T - D i s p l a y l e s t 1 , 6 , 7 7

E ? - E n d F i n d e r 3 , 1 , 1 9 5
EP - Erase Program Memory 2,1,79
E X - E x p o n e n t o f X 2 , 1 , 1 4

F ? - F r e e R e g i s t e r fi n d e r 1 , 3 , 1 9 6
F D - F i r s t D e r i v a t i v e 3 , 9 , 1 2 5
F I - F i n a n c i a l C a l c u l a t i o n s 3 , 1 , 1 ,
F L - F l a q i n p u t s f o r L B 2 , 7 , 2 1
F R - F r a c t i o n s 3 , 9 , 1

JC

L-
LB
LF
LG
LR

Ml

M2

M3

M4

M5

MA
MK

ML
MP

MS
MT

NC
NH
NP
NR
NS

Julian Date to Cal. Date 4,3,158

L

Load ha_H of LB(routine) 1,8,11
L O A D B y t e s 1 , 7 , 4
Locate F_ree Reg. Block 1,3,0
P P C L o g _ o 4 , 5 , 1
Lengthen Return Stack 3 ,4 ,26

M

Matrix, Interchange any 5,3,28
two Rows
Matrix, Multiply a row by 5,2,1
non-zero K
Matrix, Add multiple of 5,3,9
one row to other
Matrix, absolute address 5,3,56
t o (i , j)
Matrix, (i,j) to absolute 5,3,66
address
M e m o r y t o A l p h a 5 , 9 , 4 4
Make Multiple Key Assign- 1,1,1
ment
Memory Lost resize to 017 1,5,1
M u l t i p l e Va r i a b l e P l o t 4 , 7 , 1
Tl-9)
M e m o r y t o S t a c k 2 , 8 , 1 5 5
M a n t i s s a o f X 2 , 1 , 2 9

i i

Nth C_haracter
NNN to Hex
Next Prime
NNN Recall
NNN Store

2,5,172
2,5,1
4,1,99
5,9,15
5,9,1

PM
PR

1 , i ,< * j GE - Go to End 2,10, 158 PO
1,20,203

GN - Gaussian RN Generator 4,1,127 PS

1,1,40 H
2,9,94 HA - High Res. Hist. W/Axis 4,6,12 QR

HD - Hide Data Registers 1,7,143
HN - Hex to NNN 2,6,61

1,5,163 HP -
HS -

High Resolution Plot
High Resolution Histo

4,7,4,
4,6,48 RD

1,6.98 gram RF
RK

2
5
2

,4,120
,9,37
,10,181

IF -
IG -
IP -

I

Invert Flag
Integrate
Initialize Page

2,8,1
3,7,1
2,7,70

RN
RT
RX

IR - Insert Record 5,4,90 Rb

Permutations
PacF Register
Paper Out
Page Switch

Quotent Remainder

R

Sl
S2
S3
S?
SD
SK
SM
SR
SU
sv
sx

Sb
SW

T l
TB
TN

UD
UR

VA
VF
VK
VM
VS

XD
XE
XL

PPC
4,2,81
5,5,230
5, 9, 27
2,7,76

2,9,82

R e c a l l D i s p l a y M o d e 3 , 4 , 6 9
R e s e t F l a g 1 , 5 , 1 7
Reactivate Key Assign- 3,5,84
ment
Random Number Generator 4,1,146
ReUirn Address to Decimal 2,9,40
Recall from absolute ad- 2,10,129
dress in X. register
R e c a l l b " " 5 , 9 , 3 4

S t o c k S o r t 5 , 5 , 1
Small Array Sort (132) 5,7,144
Large Array Sort (>32) 5,6,34
S I Z E F i n d e r 1 , 6 , 3 2
Store D isp lay Mode 3 ,4 ,45
Suspend Key Assignment 3,4,53
S t a c k t o M e m o r y 5 , 8 , 1
Shorten Return Stack 3,4,1
Subst i tute Character 2,5,175
S o l v e R o u t i n e 3 , 8 , 9 2
Store Y in Absolute Add- 2,10,122
ress X
Store b (Rom 0 Entry) 3,4,24
Selection without replace-5,8,18
ment

TONE-Beep Alternative
Base Ten to base .B
Tones: Tone N(0-127)

U

Uncover Data Register
Unpack Register

Vjew Alpha
Vjew F_lags
View Key Assignments
VJew Mantissa
Verify Size

Hex to Decimal
XROM Entry
XROM inputs for LB

OM - Open Memory 2,10,142 2? - Sigma Resiger Finder
XC - Curtain Finder

2,8,140
4,2,37
2,2,118

1,4,71
5,5,216

1,4,62
5,8,43
2,3,1
1,10,1
2,1,59

1,10,240
1,7,119
5,8,32

1,5,23
1,7,154

T O T A L S -
PA - Program .Pointer Advance 2,10,152
PD - Program Pointer to Decimal 2,9,52 Housekeeping
PK - Pack Key Assignment Reg- 1,4,77 Math

i s t e r s P e r i p h e r a l
Synthetic

Labels Routines
31
17
7

J l
122

31
48
7

67
153

8.130 Bvtes

PPC SPECIAL ISSUE E 11

you don't) the address of the register that the .END. resides in
is in the last three nybbles of the c register. The .END. resides
in the last three bytes of this register. So we must place a 3 in
the fourth nybble from the right and the address of the .END. in
the last three nybbles of the b register.

We wil l introduce you to the use of flags. There are 14 flags.
Flags 0-9 have no special meaning and may be set and cleared as
desired. However flags 10-13 are given special meaning. They are
listed below.

F l a g I f S e t

10 Program pointer is in ROM.
11 S t a c k l i f t i s e n a b l e d .
12 Program pointer is in a pr ivate program.
13 A User coded (RPN) program is running.

Now here is the routine

Hexcode Mnemonic Description

Name

Get pointer to .END. register.
Save .END. pointer in A.
Zero C so there will be no pending returns.
Put .END. pointer in C
Set pointer = 3 for loading with constant.
Load 3 at digit pointed to by R.
Clear flag so that calculator th inks i t is in
RAM.
Set flag so calculator will execute .END.

WRIT 12(b) Write .END. address to register b.
Return.

POSTFIX

l l u c n a r a c t e r t a D I e

085 "E"
007 "G"
378 READ 13(c
106 A=C S&X
04E C=0 ALL
0A6 A<>C S&X
01C R= 3
0D0 LD@R 3
0C4 CLRF 10

2C8 SETF 13
328 WRIT 12(b
3E0 RTN

Ins t ruc t ion ALL S&X M R< @R MS XS P-Q

A=0 00E 006 01A 00A 002 01E 016 012
B=0 02E 026 03A 02A 022 03E 036 032
C=0 04E 046 05A 04A 042 05E 056 052
A<>B 06E 066 07A 06A 062 07E 076 072
B=A 08E 086 09A 08A 082 09E 096 092
A<>C 0AE 0A6 0BA 0AA 0A2 0BE 0B6 0B2
C=B 0CE 0C6 0DA 0CA 0C2 0DE 0D6 0D2
C<>B 0EE 0E6 0FA 0EA 0E2 0FE 0F6 0F2
A=C 10E 106 11A 10A 102 he 116 112
A=A+B 12E 126 13A 12A 122 13E 136 132
A=A+C 14E 146 15A 14A 142 15E 156 152
A=A+1 16E 166 17A 16A 162 17E 176 172
A=A-B 18E 186 19A 18A 182 19E 196 192
A=A-1 1AE 1A6 1BA 1AA 1A2 1BE 1B6 1B2
A=A-C ICE 1C6 IDA 1CA 1C2 IDE 1D6 1D2
c=c+c IEE 1E6 IFA 1EA 1E2 1FE 1F6 1F2
C=C+A 20E 206 21A 20A 202 21E 216 212
C=C+1 22E 226 23A 22A 222 23E 236 232
C=A-C 24E 246 25A 24A 242 25E 256 252
C=C-1 26E 266 27A 26A 262 27E 276 272
C=0-C 28E 286 29A 28A 282 29E 296 292
c=-c-i 2AE 2A6 2BA 2AA 2A2 2 BE 2B6 2B2
?B*0 2CE 2C6 2DA 2CA 2C2 2DE 2D6 2D2
?C#0 2EE 2E6 2 FA 2EA 2E2 2FE 2F6 2F2
?A<C 30E 306 31A 30A 302 31E 316 312
?A<B 32E 326 33A 32A 322 33E 336 332
?Ai*0 34E 346 35A 34A 342 35E 356 352
?A/C 36E 366 37A 36A 362 37E 376 372
RSHFA 38E 386 39A 38A 382 39E 396 392
RSHFB 3AE 3A6 3BA 3AA 3A2 3 BE 386 3B2
RSHFC 3CE 3C6 3DA 3CA 3C2 3DE 3D6 3D2
LSHFA 3EE 3E6 3FA 3EA 3E2 3FE 3F6 3F2

R W S C
?
F

L
D S

R E R R E L S ? @ ? E
E A I C T R E R R R F L
G D T R F F T =. = - I P

B T XXX 028 XXX 388 384 38C 39C 394 010 3AC 024
1 Z 078 068 33C 308 304 30C 31C 314 050 32C 064
2 Y 0B8 0A8 23C 208 204 20C 21C 214 090 22C 0A43 X 0F8 0E8 03C 008 004 00C 01C 014 0D0 02C 0E4
4 L 138 128 07C 048 044 04C 05C 054 110 06C 124
5 M 178 168 0BC 088 084 08C 09C 094 150 0AC 1646 N 1B8 1A8 17C 148 144 14C 15C 154 190 16C 1A4
7 0 1F8 1E8 2BC 288 284 28C 29C 294 1D0 2AC 1E4
8 P 238 228 13C 108 104 10C 11C 114 210 12C 224
9 Q 278 268 27C 248 244 24C 25C 254 250 26C 264

10 Y 2B8 2A8 0FC 0C8 0C4 0CC 0DC 0D4 290 0EC 2A4
11 a 2F8 2E8 1BC 188 184 18C 19C 194 2D0 IAC 2E4
12 b 338 328 37C 348 344 34C 35C 354 310 36C 324
13 c 378 368 2FC 2C8 2C4 2CC 2DC 2D4 350 2EC 364
14 d 3B8 3A8 XXX XXX XXX XXX XXX XXX 390 XXX 3A4
15 e 3F8 3E8 XXX XXX XXX XXX XXX XXX 3D0 XXX 3E4

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 9 A B C D E F G H I J K L M N O

01 P Q R S T U V W X Y Z [\] * _

02 sp. ! » # % $ & ' < > * ♦ -4 - > 7

03 0 1 2 3 4 5 6 7 8 9 09 , L = ^ ?

04 - a b c d e — T T/ Tr \ A * y t I ^
s p . = b l a n k s p a c e

Well, that's all for now. Hope we have helped to increase your
understanding of MCODE. We also hope the boss likes this enough
to p r in t i t .

SKWID
P.O. Box 3103
Tustin, CA 92681 USA

THE HP-41 TRANSLATOR PAC FOR THE HP-71

Bridging the Gap

Can you imagine a new HP-41 with 5 times the memory and four times
the speed of the HP-41? Able to display the entire stack after
each operation? With up to 10,000 direct-access data registers?
With the ability to add new functions in RAM? With a command
stack? Wi th 12-d ig i t mant issa and 3-d ig i t exponent numer ica l
accuracy, and implement ing IEEE float ing-point math except ion
handling? With the capability of executing subroutines written in
BASIC or FORTH? At half the cost of the HP-41?

Well, forget the last one, that's impossible for now. But all the
rest just descr ibe the HP-71B wi th the HP-41 Translator Pac
installed. The Translator Pac is a 48K-byte plug-in ROM that adds
to the HP-71 and HP-41 calculator mode, which emulates the calcu
lator operation of the HP-41, and can run HP-41 programs. The Pac
is scheduled to go on the HP price list February 1st (available
mid-February). Here's a summary of the whole package:

PRODUCT DESCRIPTION

48K-byte HP-71 plug-in ROM module, containing:

*HP-41 emulator system, with 147 bui l t- in standard HP-41
functions, plus 23 additional HP-41 functions and operations
unique to the emulator.

*HP-71 Text Editor program, for editing HP-41 programs and
other HP-71 text files.

*TRANS41 program, for translating HP-41 programs into the ^
emulator system.

*READ41 program, for automatic program transfer from the HP-
41 to the HP-71.

*KEYS41 key file, containing HP-71 key assignments for HP-41
keyboard functions.

*14 BASIC keywords, for BASIC language access to the FORTH
and HP-41 systems, and to HP-71 text files.

*HP-71 FORTH language system, containing 335 built-in FORTH
words, enhancing the FORTH '83 standard with floating-point,
str ing, HP-IL, and file-handling words.

Owner's Manual

HP-71 keyboard overlay for HP-41 key assignments

A NEW RECORD

This module sets a new record for the number of functions added to
an HP calculator by a plug-in module--there are 486 functions in
the ROM:

147 standard HP-41 functions
23 new HP-41 functions
11 strange HP-41 functions used only by the system

291 additional FORTH words
14 BASIC keywords

This count does not include over 100 "headerless" words that could
be used by a really ambitious and clever programming freak who has
managed to decompile and decipher the ROM code.

12 PPC SPECIAL ISSUE E

The HP-41 function list includes the complete HP-41C/CV program
mab le f unc t i on se t , p l us add i t i ona l a l pha reg i s te r, flag , and
condit ional funct ions from the HP-41CX (the t imer, a larm, and
extended memory functions are not available in the module's built-
in function set; the single function TIME l's included). In addi
tion, all of the character printing functions from the HP 82143A
Thermal Printer are included for use with HP-IL printers. HP-41
functions not included in the built-in function set can be added
to the system through the use of the underlying FORTH system. The
translator program TRANS41 is open-ended; any function added to
the HP-41 vocabulary can be handled by the translator.

The FORTH language system in the Translator Pac is nearly identi
cal to that in the FORTH/Assembler ROM (the Assembler is not
present in the Translator Pac). The ROM dictionary has 46 HP-41
words (mostly floating-point words, like E"X-1 or OCT) added to
the FORTH/Assembler ROM word set, plus a separate vocabulary
containing the remaining HP-41 words. The latter are less conven
tional FORTH words in that they depend on certain specific data
structures (like the HP-41 data or alpha registers) or use non-RPN
notation (like STO 5 or FIX IND 2), and hence cannot be casually
included in standard FORTH programming.

WHAT, NO STACK LIFT DISABLE????

The HP-41 Translator makes a bold break with tradition (here's how
you make a possible drawback into a feature) by not implementing
any stack lift disable. Yes, that's right the ENTER" key becomes
a vest iga l organ not wor th inc lud ing in the bu i l t - in keys fi le .
The underlying reason that stack-lift disable is not implemented
is to eliminate the associated system overhead. But a more vir
tuous sounding reason is that stack-lift disable was a mistake on
the HP-35, and remains a mistake today. The HP-41 translator
elects to use a more flexible input style, derived from the FORTH
outer loop and the BASIC operating system, than the actual HP-41
provides. Given this, p lus the di fficul ty of mapping the HP-41
keyboard onto that of the HP-71, eliminating stack-lift disable is
not a big deal. You're going to have to learn a different input
style anyway.

Consider how a traditional HP RPN calculator handles number entry.
Every key on the calculator is an immediate-execute key; when you
press a number key, you begin building a number string in the X-
register and the display. Each subsequent number key adds one
character to the string. To terminate the number entry, you just
press any non-numeric function key. The problem arises when you
want to enter two consecut ive numbers, wi th no operat ion in
between. Hence, the ENTER" key. But here the HP-35 designers
overshot the mark--instead of just having ENTER" terminate digit
entry, they (who knows why?) made it also carry out the unrelated
task of duplicating the number into the Y-register, then disabling
stack lift. This has the extremely unpleasant, AOS-like effect of
leaving the calculator in generally indeterminate state—you don't
know at any time whether stack lift is enabled or not, unless you
know explicitly what its last operation was.

Note: stack lift disable is "implemented" in HP-41 programs, so
that programs transferred from the HP-41 will run on the HP-71
without modification by the user. The translation program TRANS41
figures out whether the stack should be lifted or not, and writes
the translated program accordingly. (This works for all functions
except ANUM, which is indeterminate in its stack use.) Here's a
puzzle for RPN experts: How many forms of ENTER" are necessary to
hand le a l l poss ib l e s i t ua t i ons i n p rog rams? Fo r examp le , i f
ENTER" precedes a RCL, it can be replaced by a NOP. What other
cases are there?
COMMAND LINE VS. KEY-PER-FUNCTION

The HP-41 is strictly a key-per-function calculator. HP-71 FORTH
and BASIC both use a command line approach instead, i.e., you type
in one or more commands together using a simple line editor, then
press [ENDLINE] to execute the commands. This is less keystroke
efficient than the key-per-funct ion method, but more flexible in
that you can execute several instructions together, and you can
edit the command line. The command stack is another bonus of this
method.

The HP-41 translator allows you to use either method. The default
^mode is command lines. You can type in up to 96 characters of

"unctions or numbers together, each entry separated by a space,
hen press [ENDLINE] to execute the whole sequence. Each command

line is saved in the command stack. Thus to compute 5+SIN(25)*10,
you can key in

5 25 SIN 10 * [ENDLINE]

Or, if you want to see intermediate results:

5 [ENDLINE]
25 SIN [ENDLINE]

10 * [ENDLINE]

But i f you prefer key-per-function operation, you can make the
built- in file KEYS41 the active keys file, so that in user mode,
any HP-41 function can be immediate execute. For example, the [+]
key is ass igned to the s t r ing " +" , so that press ing that key
appends a + to the edit line and performs endline. The KEYS41
file provides immediate execute key assignments for most of the
HP-41 keyboard functions. You can change or add any key assign
ment using normal HP-71 key assignment procedures.

The translator is actually more keystroke efficient than the HP-41
in two cases. First, you can execute any function by just spell
ing it, without needing to resort to the clumsy HP-41 XEQ [ALPHA]
< f u n c t i o n > [A L P H A] . S e c o n d , r e g i s t e r f u n c t i o n s c a n d i r e c t l y
access any register, since they are not t ied to prompted input.
Thus STO 1234 or X<> 5432 or VIEW IND 653 are legitimate commands.

ALL THIS AND ALGEBRAIC TOO?

The pr inc ipal (only) v i r tue of a lgebraic calculators is that you
can evaluate an algebraic expression by typing it in exactly as it
is written in normal algebraic form. RPN calculators shine when
you are doing interact ive calculat ing, where you don' t know in
advance the precise path the calculation wil l fol low. The HP-41
Translator is actual ly the world 's first RPN/Algebraic calculator.
That is, you can type in any algebraic expression (actually any
numeric expression understood by the HP-71 BASIC interpreter), and
the calcu lator wi l l evaluate i t and return the resul t to the X-
register. The only constraint is that the expression contain no
spaces, which act as expression terminators. Thus, to evaluate
the expression used as an example above, you do not have to parse
the expression mentally into RPN; just type in

5+SIN(25)*10 [ENDLINE]

The result 9.23 goes into X, lifting the previous stack contents.

You can mix RPN or algebraic format as you please, for example,

1+2+3 4+5 2*6 9-8*2 + - * [ENDLINE]

returns the result 24.00--evaluating

(l+2+3)* { (4+5) - ((2*6)+(9-8*2))) .

HOW DOES IT WORK?

One can imagine several ways of providing HP-41 capability on the
HP-71. The most obvious, perhaps, is to t ranslate the HP-41
operating system into the HP-71 CPU assembly language. While this
could provide exact compatibility and maximum program execution
speed, it would be a massive task, complicated by the differing
structures of the CPU's, memories and keyboards of the HP-41 and
the HP-71. The system would also have to be integrated somehow
with the native HP-71 operating system. And all future functions
to be added to the system would have to be written in assembly
language.
Another approach is to write an HP-41 interpreter in a high-level
language. BASIC is an obvious choice, since it is provided on the
HP-71. However, this approach does not take advantage of the
normal program flow in the language of choice-- there are two
levels of interpretation required, which likely would lead to slow
HP-41 program execut ion. The evaluat ion of FORTH, which is
intrinsically much faster than BASIC, as a language for writing an
H P - 4 1 i n t e r p r e t e r , a c t u a l l y l e d t o t h e i n t r o d u c t i o n o f t h e
FORTH/Assembler ROM for the HP-71.

A third method is to translate HP-41 programs into a language
a l ready unders tood by the HP-71. Th is a l lows the t rans la ted
programs to run under the control of the normal language interpre
ter, wh ich e l iminates the speed pena l ty o f a second leve l o f
in terpre ta t ion . I t a lso a l lows you to take advantage o f a l l o f
the features of the native language, in modifying or extending the
HP-41 user language. I t does requi re the pre l iminary s tep o f
translating the original program into the new language, but this
needs only to be done once, and does not affect run-time execution
speed.

The HP-41 Translator Pac, as you might guess from its name, takes
the translation approach. HP-41 programs are translated from HP-
41 user language into compiled HP-71 FORTH, and executed like any
other FORTH program, under control of the FORTH "inner loop."
FORTH was chosen over BASIC for this purpose for several reasons,
execution speed, RPN logic, and the existence in HP-71 FORTH of
most of the HP-41 floating-point arithmetic operations, including
the 5- level HP-41- l ike float ing-point s tack. In addi t ion, FORTH
is a logical "next language" for HP-41 user language aficionados.

The choice of FORTH does have certain disadvantages. Because
FORTH is compiled, it is generally not possible to edit a program
in its final, executable form. Nor does normal FORTH provide an

PPC SPECIAL ISSUE E 13

easy means of single-stepping. There are no program line numbers,
so if you halt a program, there is no way to tell where it halted.
FORTH's memory management system is relatively primitive, which
precludes any straightforward implementation of CLP. And the HP-
71 FORTH system requires a hard-addressed kernal—the upshot of
which is that the Translator Pac and the FORTH/Assembler ROM can
not both be present in the HP-71 at the same time, since they must
both be hard addressed at the same addresses. All of this not
withstanding, it was the judgment of the Pac's developer that the
advantages of FORTH outweigh the disadvantages.

The first step in converting an HP-41 program for HP-71 execution
consists of transferring a text version of the program to an HP-71
text file. You can do this either by using the text editor
(included in the Translator Pac) to type the program in by hand,
or you can transfer the program via HP-IL from HP-41 memory to the
HP-71, using the READ41 program in the Pac. READ41 (written in
BASIC) copies HP-41 program lines sent on HP-IL by the HP-41 HP-IL
module function PRP, which conveniently converts HP-41 program
bytes into ASCII text. In either case, the program ends up in the
HP-71 as a replica of an HP-41 program listing. In this form, you
can use the editor further to modify the program, delete lines,
search/replace, etc. You can also insert comments into the pro
gram. In this text form, you can save the program on magnetic
media. The Translator Pac can not read HP-41 programs saved on
mass storage by the HP-41 because they are in a tokenized form.

The next step is translation from HP-41 user language into a form
suitable for use by the FORTH compiler. This formidable task is
accomplished by the Pac program TRANS41 (also BASIC). The output
of TRANS41 is another text file that looks very similar to the
original program, but has certain important differences:

1) FORTH memory management instructions are inserted;

2) The program's stack-lift enable/disable logic is sorted out;

3) Program comments are removed;

4) HP-41 number entry lines are converted to HP-71 format;

5) Test functions are augmented with a FORTH branch word; and

6) Alpha program lines are tweaked into a suitable format.

Any HP-41 function not requiring special handling according to
this list is left unchanged. This has the benefit that new func
tions can be added to the HP-41 translator by simply adding new
words to the HP-41 portion of the FORTH dictionary. The trans
lator will just pass the new words along as is and let the
compiler worry about them.

When translation of a program is complete, TRANS41 will continue
at your option with the last step of the process, compilation of
the program into the FORTH dictionary. This step can also be
performed from the HP-41 emulator environment. Once the program
is compiled, you can use the HP-41 functions RUN, GTO, XEQ, RTN,
and END just as you would on the HP-41.

The HP-41 emulator is activated by the keyword HP41, which can
execute either from BASIC or from FORTH. The first time you run
the emulator, you must specify an initial SIZE to reserve some
memory for HP-41 data registers. After that, you can set the size
using SIZE or PSIZE just as you would on the HP-41. To return to
FORTH or BASIC, you just type FORTH or BASIC and hit [ENDLINE].
The HP-41 environment is preserved until you reenter it (some HP-
41 flags are initialized, more or less like turning the HP-41 off
then on).
PERFORMANCE
HP-41 programs executed by the Translator Pac will run signifi
cantly faster than their HP-41 counterparts. The exact amount of
speed increase is program dependent; the range is from 3 to 8
times faster. Straight-line, math intensive programs will run at
the higher end of the range. The gamma function program from the
High Level Math Solutions book executes about 7.5 times faster on
the HP-71 than on the HP-41. Programs with lots of branches will
run more slowly. The multiple curve fit program from Curve Fit
ting for Programmable Calculators, by William M. Kolb, runs about
4.5 times faster on the HP-71.

The Translator Pac is more profligate in memory use than the HP-
41. The final, compiled version of a program needs about 2.5
times as much memory in the HP-71 than in the HP-41. This differ
ence corresponds to the difference between the one-byte program
tokens used by the HP-41 and the 5 nibble FORTH execution addres
ses used by the HP-71. The translator also requires three differ
ent versions of a single program: the HP-41 user language text,
the translated text, and the compiled version. A maximum of two
of these needs to be present at any time. If you have a tape or
disk drive, only one version needs to reside in HP-71 memory at
any time.
RELATION TO THE FORTH/ASSEMBLER ROM

The Translator Pac FORTH system is very similar to that contained
in the HP-82441A FORTH/Assembler ROM. At first approximation, the

Translator Pac just is the FORTH/Assembler ROM, with the HP-41
vocabulary substituted for the Assembler (the KEYBOARD IS lex file
is also not present in the Translator Pac). This has the drawback
noted previously that both modules can not be plugged into the HP-
71 simultaneously. But further, the two FORTH systems cannot
share the same RAM files. This is due to the differing
organizations of the system portions of the RAM files, and to the
fact that the ROM-based FORTH dictionaries are different, so that
the compilation addresses of the ROM words are not the same for
the two systems. The FORTH/Assembler ROM's RAM file is named
FORTHRAM; the Translator Pac's is named FTH41RAM. The different
names should help programmers keep the two types of files sorted
out.

Here is a brief summary of the primary differences between the two
FORTH systems:

*The Translator Pac does not contain the Assembler, the associated
words ASSEMBLE, PAGESIZE, LISTING, and VARID, and the Assembler
user variables.
*With the exception of the Assembler words, the Translator Pac ROM
dictionary is a superset of that of the FORTH/Assembler ROM. The
Translator dictionary is organized into two vocabularies: FORTH
and HP41V. The former is the parent vocabulary of the latter, so
that FORTH words are available when the context vocabulary is
HP41V, but not vice-versa.
*The Translator Pac FORTH vocabulary is augmented by numerous HP-
41 floating-point words that are not included in the FORTH/Assem
bler ROM.

translator Pac floating-point words follow the HP-41 convention-
tha t e r ro rs l eave the floa t i ng -po in t s tack i n tac t . The
FORTH/Assembler words drop the stack, update LASTX, etc., before
error-checking.
*The Translator Pac HP41V vocabulary contains HP-41 words that
depend on HP-41 data structures or use post-fix notation.
*The user variable area in the FTH41RAM file contains the HP-41
flags, program pointer, return stack, alpha register, size and
sigma register variables, and other HP-41 system variables.

*The FTH41RAM user dictionary begins with the FORTH word, but also
contains the HP41V vocabulary word, and a null word used to link
the various RAM and ROM dictionaries together.

*The outer interpreter loop in the Translator Pac checks an
emulator-active flag following interpretation of the input buffer.
If the flag is clear, the OK (n } message is displayed. If set,
a vectored HP-41 display word is executed (typically, to display
the X-register).

*HP-41 error messages (Alpha Data, Data Error, etc.) are added to
the system error table in the Translator Pac.

*The [ATTN] key and poll check carried out during execution of
semicolon and branching has been rewritten for the Translator Pac,
resulting in somewhat faster FORTH execution.

S U M M A R Y ^

The Translator Pac extends the flexibility of the HP-71 by
providing an extensive RPN calculator/programming capability
closely modeled on that of the premier RPN calculator, the HP-41.
It is a translator rather than an emulator. Its calculator pro
perties are designed to work with the strengths of the HP-71
rather than to be a keystroke copy of the HP-41. HP-41 programs
are translated into FORTH, a language of more general application
than HP-41 user language.

The primary purpose of the Pac is to allow HP-71 owners to access
the HP-41 software base, either their own programs, or published
programs. The real-time calculator capabilities of the Pac are
necessary to support this objective. Inclusion of an editor is a
step beyond the initial purpose, in that programmers can write new
HP-41 language programs, or modify existing ones, on the HP-71.
Full access to a FORTH language system goes even further, since
programs can be written that have no backwards compatibility path
to the HP-41.

HP-41 users/programmers can use the HP-41 translator without any
knowledge of FORTH. (FORTH programmers can use the FORTH system
without any regard for the HP-41 emulator--but they would be
better off with the FORTH/Assembler ROM, which contains an assem
bler.) You might view the FORTH language system underlying the
HP-41 system as a bonus feature that can provide a growth path for
HP-41 programmers to carry their RPN skills into a language simi- —
lar in spirit to HP-41 language, but providing vastly improved
performance. The price for this performance is a requirement for
more careful programming practices—FORTH does not have the fool
proof system protection of HP-41 language or BASIC.

The documentation of the FORTH system in the Translator Pac manual
is taken mostly whole from the FORTH/Assembler ROM manual. That

14 PPC SPECIAL ISSUE E

is , i t is only a br ief descr ipt ion of the propert ies of the sys
tem, p l us a l i s t o f defin i t i ons f o r each o f t he wo rds i n t he
bui l t - in dict ionary. The documentat ion is sui table only for pro
grammers already familiar with FORTH—there is no tutorial mater
ial provided. There are many fine FORTH books available; to learn
HP-71 FORTH from scratch, you will have to study one of these
books, keeping in mind the differences between HP-71 FORTH and
"standard" FORTH, which are described in the Pac owner's manual.

by William C. Wickes
Hewlett-Packard Portable Computer Division

c PAM FOR THE HP-75 D
This program was written some time ago in an effort to make

the 75 act more "friendly" in everyday use and eliminate much of
the drudgery involved in typing CAT ALL, COPY, PLIST, EDIT, etc.
many time. The program is an outgrowth of discussions with Jim
Walters (7692), without whos original idea this program may never
have been written. I use this program all of the time and find it
speeds operation a great deal. It operates much the way PAM does
on the 110/150 and hence is named such. It's not perfect, but is
a real convenience.

The reader should note the system configuration for which
th is i s wr i t ten and make the mod ifica t ions necessary fo r h is
system. The 75 is used with or without the MC 80-column video
interface 82161A Cassette Drive, and either the 82162A Thermal
(strip) Printer or 2225B Thinkjet Printer. The AUT0L00P program
o r I / O R O M i s r e q u i r e d . I h a v e PA M a s s i g n e d t o a u t o s t a r t
(CHR$(159)) and also [SHIFT] [RUN] (CHR$(173)), the latter because
it 's often necessary to start PAM running again (such as after
ed i t i ng a fi l e) .

Here is the command summary:

[FET]
P

R

M
C

Shf[DEL]
[EDIT]
[RUN]
[TIME]

Display a menu of most commands
PLIST the displayed file to specified device:
T d e s i g n a t e s o u t p u t t o T h i n k j e t , N o r m a l (N) o r

Compressed (C)
S output to 82162A str ip pr inter
V output to 80-column video display

LIST the displayed file to DISPLAY IS device
Write the displayed file to to Mass Storage (M) or to
Card (C)
Read specified file name in from Mass Storage (M) or
from Card (C)
Display available memory (bytes and Kbytes)
Clear either DISPLAY IS device (D) or Loop (L)
Purge displayed file
Edi t d isp layed fi le
Run displayed file (if BASIC)

, , Display the current time and date
up cursor Go up one entry in the CAT (sort of like a continuous

CAT ALL)
dn cursor Go down one entry in the CAT

[CTL] L LIST keys
[CTL] [EDIT] EDIT keys

HP-IL commands could be used to allow more than one of the
same type device on the loop and selection of which one (or all)
of them would be active listeners/talkers.

Brian Walsh (6951)
2103 Huntingdon Chase
Dunwoody, GA 30338

10 DISP CHR$(27)&"E" 0 F=0
20 ON ERROR WIDTH 32 0 DELAY .3
30 DISPLAY IS ":D1" 0 WIDTH 80 0 PWIDTH INF 0 DELAY 0 0 OFF ERROR
40 L$=CHR$(137)&"PLWRMC"&CHR$(170)&CHRS(131)&CHR$(141)&CHR$(129)&

CHR$(132)&CHR$(133)
50 L$=L$&CHR$(12)&CHR$(195)
60 DISP CAT$(F)
70 KS=UPRC$(KEY$) 0 IF K$="" THEN 70
80 L=P0S(L$,K$) 0 IF L=0 THEN 70
90 ON L GOTO 100,180,170,330,330,270,290,420,150,280,160,110,130,

430,410
100 DISP "P/Lst Wrt Rd Mm Clr Pu Ed Run Tm" 0 WAIT 1.5 0 GOTO 60
110 IF F>0~THEN Fj=F-T
120 GOTO 60
130 IF CAT$(F+1)#"" THEN F=F+1
140 GOTO 60
150 GOSUB 440 0 EDIT CAT$(F) 0 OFF ERROR 0 END
160 DISP TIME$&" "&DATE$ 0 WAIT 1.2 0 GOTO 60
170 GOSUB 440 0 LIST CATS(F) 0 OFF ERROR 0 GOTO 60
180 GOSUB 440 0 DISP "Thinkjet or Strip or Video ?"
190 K$=UPRC$(KEY$) 0 IF K$#"T" AND K$#"S" ARD K$#"V" THEN 190
200 IF K$="S" THEN PRINTER IS ":P1" 0 GOTO 250
210 IF K$="V" THEN PRINTER IS ":D1" 0 DISP CHR$(27)&"[" 0 GOTO 250
220 PRINTER IS

Compressed
:P2" 0 PRINT CHR$(27)&"«s0C" 0 DISP "Normal or

230 K"$=UPRC$(KEY$) 0 IF K$#"N" AND K$#"C" THEN 230
240 IF K$="C" THEN PRINT CHR$(27)&"&k2S" ELSE PRINT CHR$(27)&

" & k 0 S " , ,
250 PRINT CAT$(F) 0 PRINT TIME$&" "&DATE$ 0 PRINT 0 PLIST CAT$(F)

0 PRINT CHR$(12)
260 OFF ERROR 0 GOTO 60
270 DISP MEM;RES/1024 0 WAIT 1.2 0 GOTO 60
280 GOSUB 440 0 CALL CAT$(F) 0 OFF ERROR 0 GOTO 60
290 DISP "Display or Loop ?"
300 K$=UPRTT$(KEY$) 0 TF K$#"D" AND K$#"L" THEN 300
310 IF K$="D" THEN DISP CHR$(27)&"E" 0 GOTO 60
320 GOSUB 440 0 CLEAR LOOP 0 OFF ERROR 0 GOTO 60
330 DISP "Mass Sto. or Card ?"
340 C$=UPRf$(KEY$) 0 IF"~C$#"M" AND C$#"C" THEN 340
350 IF K$="R" THEN 380
360 IF C$="C" THEN COPY CAT$(F) TO CARD 0 GOTO 60
370 GOSUB 440 0 COPY CAT$(F) TO ":M1" 0 OFF ERROR 0 GOTO 60
380 INPUT "File name to read in ? ";K$
390 IF C$="M" THEN GOSUB 440 0 COPY K$&":M1" TO K$ 0 OFF ERROR

ELSE COPY CARD TO K$
400 GOTO 60
410 EDIT KEYS 0 END
420 PURGE CAT$(F) 0 GOTO 60
430 LIST KEYS 0 GOTO 60
440 ON ERROR GOTO 60
450 RETURN ENO LINE

BIORHYTHMS

This program calculates Meinderts biorhythm if you input anything
which is not a valid date (e.g. zero) for the current date, and
any biorhythm if you enter a birthdate and any date for that day.
Change line 06 according to your own birthdate (note the format,
DMY or MDY, depending upon the status of flag 31!). Besides
giv ing values for physical , sensi t ive, and cogni t ive cycles, the
output shows whether the curve is ascending (+) or descending (-).

To use, key in the birthdate, press ENTER/, key in the biorhythm
date, XEQ "BIOR". R/S after the last output will show your bio
rhythm for the next day.

The program uses no registers, the Extended Functions and Time
modules are required.

Synthetic text l ines (in hex):

14: F5, 17, 50, 48, 59, 53
16: F5, IC, 53, 45, 4E, 53
18: F5, 21, 43, 4F, 47, 4E

Meindert Kuipers (7612)
Laan 2/10
9712 AV Groningen
NETHERLANDS

Eric van der Wateren (8146)
Aquamarijnstraat 57
9743 PB Groningen
NETHERLANDS

01*LBL "BIOR" 18 "ICOGN" 35 *
02 SF 25 19 XEQ 01 36 SIN
03 DDAYS 20 RDN 37 X*0?
04 FS?C 25 21 STOFLAG 38 X>0?
05 GTO 00 22 R/ 39 "F "
06 24.02196 23 E 40 ARCL X
07 DATE 24 + 41 X<> L
08 DDAYS 25 RTN 42 COS
09*LBL 00 26 GTO 00 43 X<0?
10 RCLFLAG 27*LBL 01 44 "F -"
11 X<>Y 28 ENTER? 45 X>0?
12 ABS 29 "F: " 46 "F +"
13 FIX 1 30 ATOX 47 AVIEW
14 "SPHYS" 31 MOD 48 RDN
15 XEQ 01 32 LASTX 49 END
16 '*SENS" 33 /
17 XEQ 01 34 360 112 BYTES

REGISTERS: 17
RGW 1 Cl-4)

ROW 2 Cd-7)

iDW A CU-17)

tOW 5 C17-51)

iOW 6 tgg-3pl

ROW 7 C30-33>

ROW B (33-46)

11,1111 III ill III llll IIII III llll III III 11 llll II lllilll: IH^

■

PPC SPECIAL ISSUE E 15

